Reflection measurement technique of electro‐optic coefficients in lithium niobate crystals and poled polymer films

A simple reflection technique proposed by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)] as well as independently by Schildkraut [Appl. Opt. 29, 2839 (1990)] for measuring the electro‐optic coefficients of poled polymer films is applied to measure the r33 values of both z‐cut lithium niobate crystal and diazo‐dye‐substituted polymer films. The measured r33 value of the lithium niobate crystal is in excellent agreement with the known value, and the observed r33 values of the poled polymer films agree well with those predicted from the second‐harmonic‐generation measurements.

[1]  Y. Shuto,et al.  Electrooptic light modulation and second-harmonic generation in novel diazo-dye-substituted poled polymers , 1991, IEEE Photonics Technology Letters.

[2]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[3]  J. Nordmann,et al.  Electro-optic determination of second and third-order susceptibilities in poled polymer films , 1991 .

[4]  Larry R. Dalton,et al.  Traveling wave electro‐optic phase modulator using cross‐linked nonlinear optical polymer , 1994 .

[5]  M. Onoe,et al.  Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) , 1967 .

[6]  Jay S. Schildkraut,et al.  Dispersion of the complex electro-optic coefficient and electrochromic effects in poled polymer films , 1992 .

[7]  F. Wooten,et al.  Optical Properties and Reflectance of Uniaxial Absorbing Crystals , 1968 .

[8]  M. Moskovits,et al.  Specular reflectance and ellipsometric spectroscopy of oriented molecular layers , 1971 .

[9]  Y. Uematsu,et al.  Piezoelectricity, pyroelectricity, and thermoelectricity of polymer films , 1968 .

[10]  Mark G. Kuzyk,et al.  Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties , 1987 .

[11]  Paul Lagasse,et al.  Integrated optic devices based on nonlinear optical polymers , 1991 .

[12]  A. Korpel,et al.  Measurement of light-sound interaction efficiencies in solids , 1965 .

[13]  M. Sigelle,et al.  Determination of the electrooptic coefficients of 3‐methyl 4‐nitropyridine 1‐oxide by an interferometric phase‐modulation technique , 1981 .

[14]  Kenneth D. Singer,et al.  Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation , 1981 .

[15]  G. F. Lipscomb,et al.  20 GHz electro-optic polymer Mach-Zehnder modulator , 1991 .

[16]  J. Schildkraut,et al.  Determination of the electrooptic coefficient of a poled polymer film. , 1990, Applied optics.

[17]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[18]  Toshikuni Kaino,et al.  Electrooptic Light Modulation in Poled Azo-Dye-Substituted Polymer Waveguides , 1991 .

[19]  Donald M. Burland,et al.  SECOND-ORDER NONLINEARITY IN POLED-POLYMER SYSTEMS , 1994 .

[20]  C. C. Teng,et al.  Simple reflection technique for measuring the electro‐optic coefficient of poled polymers , 1990 .

[21]  Ivan P. Kaminow,et al.  Electrooptic light modulators , 1966 .

[22]  C. C. Teng,et al.  Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth , 1992 .

[23]  Barton A. Smith,et al.  Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation , 1993 .

[24]  G. F. Lipscomb,et al.  An exceptionally large linear electro‐optic effect in the organic solid MNA , 1981 .

[25]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .