The GWIPS‐viz Browser

GWIPS‐viz is a publicly available browser that provides Genome Wide Information on Protein Synthesis through the visualization of ribosome profiling data. Ribosome profiling (Ribo‐seq) is a high‐throughput technique which isolates fragments of messenger RNA that are protected by the ribosome. The alignment of the ribosome‐protected fragments or footprint sequences to the corresponding reference genome and their visualization using GWIPS‐viz allows for unique insights into the genome loci that are expressed as potentially translated RNA. The GWIPS‐viz browser hosts both Ribo‐seq data and corresponding mRNA‐seq data from publicly available studies across a number of genomes, avoiding the need for computational processing on the user side. Since its initial publication in 2014, over 1885 tracks have been produced across 24 genomes. This unit describes the navigation of the GWIPS‐viz genome browser, the uploading of custom tracks, and the downloading of the Ribo‐seq/mRNA‐seq alignment data. © 2018 by John Wiley & Sons, Inc.

[1]  Emily M. Strait,et al.  The arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome , 2015, Genesis.

[2]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[3]  Ribosome profiling the cell cycle: lessons and challenges , 2017, Current Genetics.

[4]  Patrick B. F. O'Connor,et al.  Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes , 2015, Genome Biology.

[5]  J. Weissman,et al.  Ribosome profiling reveals the what, when, where and how of protein synthesis , 2015, Nature Reviews Molecular Cell Biology.

[6]  Felix Naef,et al.  Ribosome profiling and dynamic regulation of translation in mammals. , 2017, Current opinion in genetics & development.

[7]  Zhi Xie,et al.  Computational resources for ribosome profiling: from database to Web server and software , 2019, Briefings Bioinform..

[8]  Audrey M. Michel,et al.  RiboGalaxy: A browser based platform for the alignment, analysis and visualization of ribosome profiling data , 2016, RNA biology.

[9]  P. Myler,et al.  Illuminating Parasite Protein Production by Ribosome Profiling. , 2016, Trends in parasitology.

[10]  Hyeshik Chang,et al.  Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. , 2016, Molecular cell.

[11]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[12]  Joshua G. Dunn,et al.  Translation from unconventional 5′ start sites drives tumour initiation , 2017, Nature.

[13]  Joshua B. Plotkin,et al.  riboviz: analysis and visualization of ribosome profiling datasets , 2017, BMC Bioinformatics.

[14]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[15]  Uwe Ohler,et al.  Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. , 2017, Trends in genetics : TIG.

[16]  Miguel Beato,et al.  bwtool: a tool for bigWig files , 2014, Bioinform..

[17]  T. Preiss,et al.  Dynamics of ribosome scanning and recycling revealed by translation complex profiling , 2016, Nature.

[18]  Yan Wang,et al.  RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling , 2015, Nucleic Acids Res..

[19]  Noam Stern-Ginossar,et al.  Decoding Viral Infection by Ribosome Profiling , 2015, Journal of Virology.

[20]  Fabio Lauria,et al.  riboWaltz: optimization of ribosome P-site positioning in ribosome profiling data , 2017 .

[21]  Nicholas T Ingolia,et al.  Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. , 2014, Cell reports.

[22]  Lili Zhang,et al.  SmProt: a database of small proteins encoded by annotated coding and non‐coding RNA loci , 2017, Briefings Bioinform..

[23]  Yanhui Hu,et al.  FlyBase at 25: looking to the future , 2016, Nucleic Acids Res..

[24]  Jeffrey A. Hussmann,et al.  Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast , 2015, bioRxiv.

[25]  Vadim N. Gladyshev,et al.  Ribonuclease selection for ribosome profiling , 2016, Nucleic acids research.

[26]  Gong Zhang,et al.  TranslatomeDB: a comprehensive database and cloud-based analysis platform for translatome sequencing data , 2017, Nucleic Acids Res..

[27]  Nicholas T. Ingolia,et al.  Ribosome Profiling as a Tool to Decipher Viral Complexity. , 2015, Annual review of virology.

[28]  Audrey M. Michel,et al.  AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation , 2018, Nature.

[29]  Audrey M. Michel,et al.  PausePred and Rfeet: webtools for inferring ribosome pauses and visualizing footprint density from ribosome profiling data , 2018, RNA.

[30]  John Chilton,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update , 2016, Nucleic Acids Res..

[31]  Rachel Legendre,et al.  RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis , 2015, Bioinform..

[32]  Nikolaus Rajewsky,et al.  Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation , 2014, The EMBO journal.

[33]  Jonathan S. Weissman,et al.  Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data , 2016, BMC Genomics.

[34]  Audrey M. Michel,et al.  Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale , 2013, Wiley interdisciplinary reviews. RNA.

[35]  Pascal Barbry,et al.  RiboProfiling: a Bioconductor package for standard Ribo-seq pipeline processing , 2016, F1000Research.

[36]  Audrey M. Michel,et al.  Observation of dually decoded regions of the human genome using ribosome profiling data , 2012, Genome research.

[37]  Lisa C. Harper,et al.  MaizeGDB update: new tools, data and interface for the maize model organism database , 2015, Nucleic Acids Res..

[38]  Vadim N. Gladyshev,et al.  Translation inhibitors cause abnormalities in ribosome profiling experiments , 2014, Nucleic acids research.

[39]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[40]  Lennart Martens,et al.  sORFs.org: a repository of small ORFs identified by ribosome profiling , 2015, Nucleic Acids Res..

[41]  Audrey M. Michel,et al.  GWIPS-viz: 2018 update , 2017, Nucleic Acids Res..

[42]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[43]  J. Couso,et al.  Ribosomal profiling adds new coding sequences to the proteome. , 2015, Biochemical Society transactions.

[44]  Patrick B. F. O'Connor,et al.  Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression , 2015, eLife.

[45]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[46]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[47]  Pavel V. Baranov,et al.  Comparative survey of the relative impact of mRNA features on local ribosome profiling read density , 2015, Nature Communications.

[48]  V. Ramakrishnan,et al.  Structures of the human mitochondrial ribosome in native states of assembly , 2017, Nature Structural &Molecular Biology.

[49]  James Taylor,et al.  Ribosome A and P sites revealed by length analysis of ribosome profiling data , 2015, Nucleic acids research.

[50]  David Haussler,et al.  The UCSC Genome Browser database: 2017 update , 2016, Nucleic Acids Res..

[51]  G. Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[52]  J Michael Cherry The Saccharomyces Genome Database: A Tool for Discovery. , 2015, Cold Spring Harbor protocols.

[53]  C. Dieterich,et al.  Bayesian prediction of RNA translation from ribosome profiling , 2017, Nucleic acids research.

[54]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[55]  Nicholas T. Ingolia Ribosome profiling: new views of translation, from single codons to genome scale , 2014, Nature Reviews Genetics.

[56]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[57]  Thomas J. Hardcastle,et al.  The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis , 2015, RNA.

[58]  O. Namy,et al.  Translation Analysis at the Genome Scale by Ribosome Profiling. , 2016, Methods in molecular biology.

[59]  Miguel A. Andrade-Navarro,et al.  uORFdb—a comprehensive literature database on eukaryotic uORF biology , 2013, Nucleic Acids Res..

[60]  Patrick B. F. O'Connor,et al.  Insights into the mechanisms of eukaryotic translation gained with ribosome profiling , 2016, Nucleic acids research.

[61]  Alexander Bartholomäus,et al.  Mapping the non-standardized biases of ribosome profiling , 2016, Biological chemistry.

[62]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[63]  Desmond G. Higgins,et al.  GWIPS-viz: development of a ribo-seq genome browser , 2013, Nucleic Acids Res..

[64]  Jonathan S. Weissman,et al.  rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments , 2013, Bioinform..

[65]  Rachel Green,et al.  High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. , 2015, Cell reports.