Thermally and Optically Fixable Shape Memory in Azobenzene-Functionalized Glassy Liquid Crystalline Polymer Networks

Thermally and optically fixed shape memory is examined in glassy, azobenzene- functionalized liquid crystalline polymer networks (azo-LCN) in the twisted nematic (TN) geometry. The thermal and optical responses of two materials with a large difference in crosslink density are contrasted. The crosslink density was reduced through the inclusion of a monoacrylate liquid crystal monomer RM23. Reducing the crosslink density decreases the threshold temperature of the thermally-induced shape change and increases the magnitude of the deflection. Surprisingly, samples containing RM23 also allows for retention of a complex permanent shape, potentially due to differentiated thermal response of the pendant and main chain mesogenic units of the azo-LCN material.

[1]  P. Palffy-Muhoray,et al.  Surface wrinkling in liquid crystal elastomers , 2012 .

[2]  K. Harris,et al.  Physical Properties of Anisotropically Swelling Hydrogen-Bonded Liquid Crystal Polymer Actuators , 2007, Journal of Microelectromechanical Systems.

[3]  D. Broer,et al.  (Photo-)thermally induced formation of dynamic surface topographies in polymer hydrogel networks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[4]  W. Huck,et al.  Shape-memory nanoparticles from inherently non-spherical polymer colloids , 2005, Nature materials.

[5]  Christopher N. Bowman,et al.  Actuation in Crosslinked Polymers via Photoinduced Stress Relaxation , 2006 .

[6]  R. Vaia,et al.  Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers , 2009 .

[7]  K. Bhattacharya,et al.  Disclination-mediated thermo-optical response in nematic glass sheets. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  T. Xie Recent advances in polymer shape memory , 2011 .

[9]  K. Harris,et al.  Large amplitude light-induced motion in high elastic modulus polymer actuators , 2005 .

[10]  R. Vaia,et al.  Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks , 2011 .

[11]  R. Vaia,et al.  Photomechanical Response of Glassy Azobenzene Polyimide Networks , 2011 .

[12]  K. Harris,et al.  Photopatterned liquid crystalline polymers for microactuators , 2006 .

[13]  R. Vaia,et al.  A high frequency photodriven polymer oscillator , 2008 .

[14]  Nelson V. Tabiryan,et al.  Liquid crystalline polymer cantilever oscillators fueled by light , 2010 .

[15]  Shin‐Tson Wu,et al.  Adaptive liquid lens actuated by photo-polymer. , 2009, Optics express.

[16]  R. Vaia,et al.  Torsional mechanical responses in azobenzene functionalized liquid crystalline polymer networks , 2013 .

[17]  M. Warner,et al.  Blueprinting nematic glass: systematically constructing and combining active points of curvature for emergent morphology. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Richard A. Vaia,et al.  Relationship between the Photomechanical Response and the Thermomechanical Properties of Azobenzene Liquid Crystalline Polymer Networks , 2010 .

[19]  H. Finkelmann,et al.  Nematic liquid single crystal elastomers , 1991 .

[20]  R. Vaia,et al.  Enhancement of photogenerated mechanical force in azobenzene-functionalized polyimides. , 2012, Angewandte Chemie.

[21]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[22]  K. M. Lee,et al.  Autonomous, Hands‐Free Shape Memory in Glassy, Liquid Crystalline Polymer Networks , 2012, Advanced materials.

[23]  K. Harris,et al.  Self-assembled polymer films for controlled agent-driven motion. , 2005, Nano letters.

[24]  Spontaneous thermal expansion of nematic elastomers , 2001, cond-mat/0106138.

[25]  D. Broer,et al.  Printed artificial cilia from liquid-crystal network actuators modularly driven by light. , 2009, Nature materials.

[26]  J. Rack,et al.  Bending Materials with Light: Photoreversible Macroscopic Deformations in a Disordered Polymer , 2011, Advanced materials.

[27]  A. Schenning,et al.  Two-dimensional pH-responsive printable smectic hydrogels. , 2012, Chemical communications.

[28]  A. Schenning,et al.  A Printable Optical Time‐Temperature Integrator Based on Shape Memory in a Chiral Nematic Polymer Network , 2013 .

[29]  K. Harris,et al.  Glassy photomechanical liquid-crystal network actuators for microscale devices , 2007, The European physical journal. E, Soft matter.

[30]  Richard A. Vaia,et al.  Polymer design for high temperature shape memory: Low crosslink density polyimides , 2013 .

[31]  C. Bowman,et al.  Photoinduced Plasticity in Cross-Linked Polymers , 2005, Science.

[32]  Humberto Campanella,et al.  Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers. , 2011, Macromolecular rapid communications.

[33]  Laurens T. de Haan,et al.  Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. , 2012, Angewandte Chemie.

[34]  P. Mather,et al.  Shape Memory Polymer Research , 2009 .

[35]  D. Broer,et al.  Single-composition three-dimensionally morphing hydrogels , 2013 .

[36]  K. Harris,et al.  Thermo‐Mechanical Responses of Liquid‐Crystal Networks with a Splayed Molecular Organization , 2005 .

[37]  E M Terentjev,et al.  UV manipulation of order and macroscopic shape in nematic elastomers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Fangfu Ye,et al.  Shape selection of twist-nematic-elastomer ribbons , 2011, Proceedings of the National Academy of Sciences.

[39]  J. E. Marshall,et al.  Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation , 2012 .

[40]  R. Vaia,et al.  Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks , 2011 .

[41]  S. Serak,et al.  Polymer film with optically controlled form and actuation. , 2005, Optics express.

[42]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[43]  K. Horie,et al.  Photoinduced Deformation of Rigid Azobenzene-Containing Polymer Networks , 2013 .

[44]  A. Schenning,et al.  Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks. , 2012, Journal of the American Chemical Society.

[45]  K. Harris,et al.  A Glassy Bending-Mode Polymeric Actuator Which Deforms in Response to Solvent Polarity , 2006 .

[46]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[47]  K. A. Burke,et al.  Soft shape memory in main-chain liquid crystalline elastomers , 2010 .

[48]  T. White,et al.  Photochemical Mechanism and Photothermal Considerations in the Mechanical Response of Monodomain, Azobenzene-Functionalized Liquid Crystal Polymer Networks , 2012 .

[49]  K. M. Lee,et al.  Photomechanical mechanism and structure-property considerations in the generation of photomechanical work in glassy, azobenzene liquid crystal polymer networks , 2012 .

[50]  E. Terentjev,et al.  Dispersion and Alignment of Carbon Nanotubes in Liquid Crystalline Polymers and Elastomers , 2010, Advanced materials.

[51]  Cees W. M. Bastiaansen,et al.  Light-Induced Formation of Dynamic and Permanent Surface Topologies in Chiral–Nematic Polymer Networks , 2012 .

[52]  P. Ajayan,et al.  Dynamic Self-Stiffening in Liquid Crystal Elastomers , 2013, Nature Communications.

[53]  S. Serak,et al.  Azobenzene liquid crystal polymer-based membrane and cantilever optical systems. , 2009, Optics express.