저궤도 인공위성의 센서 및 구동기 통합 고장검출 및 분리 기법
暂无分享,去创建一个
An integrated fault detection and isolation method is proposed in this paper. The main objective of this paper is development fault detection, isolation and diagnosis algorithm based on the DKF (Decentralized Kalman Filter) and the bank of IMM (Interacting Multiple Model) filters using penalty scalar for both partial and total faults and the outlier detection algorithm for preventing false alarm also included. The proposed FDI (Fault Detection and Isolation) scheme is developed in four phases. In the first phase, the outlier detection filter is designed to prevent false alarm as a pre-filter. In the second phases, two local filters and master filter are designed to detect sensor faults. In the third phases, the proposed FDI scheme checks sensor residual to isolate sensor faults and 11 EKFs actuator fault models are designed to detect wherever actuator faults occur. In the last phases, four filters are designed to identify the fault type which is either the total fault or partial fault. The developed scheme can deal with not only sensor and actuator faults, but also preventing false alarm. An important feature of the proposed FDI scheme can decreases fault isolation time and figure out not only fault detection and isolation but also fault type identification. To verify the proposed FDI algorithm performance, the Simulator is also developed under the Matlab/Simulink environment.