Nutrient and metabolite gradients in mammalian cell hollow fiber bioreactors

This work has investigated high density CRL-1606 hybridoma cell culture in the shell-side of ultrafiltration hollow fiber bioreactors. Oxygen depletion was measured in the recycle stream, and has been identified as the critical, axial scale-limiting factor in these reactors. The composition of the extracapillary space has been studied by rapidly freezing these reactors in liquid nitrogen to recover samples of the shell-side environment. The accumulation of inhibitory metabolites should have only a marginal impact on growth and product formation of this hybridoma cell line. Oxygen depletion is expected to be the major limiting factor for both the axial and radial scale-up of hollow fiber bioreactors. On eudie dans ce travail la culture de cellules hybridomes CRL-1606 a haute densite aux parois de bioreacteurs d'ultrafiltration a fibres creuses. L'epuisement de l'oxygene a ete mesure dans un courant de recyclage et identifie comme facteur axial critique limitant l'entartrage dans ces reacteurs. On a etudie la composition de l'espace extracapillaire en refroidissant rapidement ces reacteurs dans de l'azote liquide afin de recuperer des echantillons pres des parois. L'accumulation des metabolites inhibitrices ne devrait avoir qu'une faible incidence sur la croissance et la formation de produits de cette lignee de cellules hybridomes. L'epuisement de l'oxygene devrait ětre le facteur limitant principal pour la mise a l'echelle tant axiale que radiale des bioreacteurs a fibres creuses.

[1]  G. Belfort,et al.  Immobilization of suspended mammalian cells: analysis of hollow fiber and microcapsule bioreactors. , 1987, Advances in biochemical engineering/biotechnology.

[2]  S. Reuveny,et al.  Factors affecting cell growth and monoclonal antibody production in stirred reactors. , 1986, Journal of immunological methods.

[3]  R. Dean,et al.  CONTINUOUS PRODUCTION OF MONOCLONAL ANTIBODIES BY CHEMOSTATIC AND IMMOBILIZED HYBRIDOMA CULTURE , 1985 .

[4]  A J Sinskey,et al.  Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells , 1986, Biotechnology and bioengineering.

[5]  K. Piez,et al.  The free amino acid pool of cultured human cells. , 1958, The Journal of biological chemistry.

[6]  P. Gullino,et al.  Cell Culture on Artificial Capillaries: An Approach to Tissue Growth in vitro , 1972, Science.

[7]  R. Gillies,et al.  A stirred bath technique for diffusivity measurements in cell matrices , 1988, Biotechnology and bioengineering.

[8]  C. Cooney,et al.  Mammalian cell and protein distributions in ultrafiltration hollow fiber bioreactors , 1990, Biotechnology and bioengineering.

[9]  Wheatley Dn,et al.  Uptake and incorporation of amino acids by suspension cultured mammalian cells: a comparative study involving eleven naturally-occurring and four analogue amino acids. , 1981 .

[10]  Takeshi Kobayashi,et al.  Kinetic expression for human cell growth in a suspension culture system , 1986 .

[11]  D. H. Randerson Large-scale cultivation of hybridoma cells , 1985 .

[12]  B A Solomon,et al.  Monoclonal antibody production in hollow fiber bioreactors using serum-free medium. , 1989, BioTechniques.

[13]  T. Dodge,et al.  Cultivation of Mammalian Cells in Bioreactors , 1985, Biotechnology progress.

[14]  A. Lehninger,et al.  L-lactate transport in Ehrlich ascites-tumour cells. , 1976, The Biochemical journal.

[15]  A J Sinskey,et al.  Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates , 1988, Biotechnology and bioengineering.

[16]  K. Bentley,et al.  Monoclonal antibody against human fibronectin which inhibits cell attachment. , 1982, Hybridoma.

[17]  W. Thilly,et al.  Growth of mammalian cells at high oxygen concentrations. , 1989, Journal of cell science.

[18]  C. Cooney,et al.  Model of oxygen transport limitations in hollow fiber bioreactors , 1991, Biotechnology and bioengineering.

[19]  C. Kleinstreuer,et al.  Analysis and simulation of hollow‐fiber bioreactor dynamics , 1986, Biotechnology and bioengineering.

[20]  P. Bromberg,et al.  The existence of ammonia in blood in vivo with observations on the significance of the NH4 plus minus NH3 system. , 1960, The Journal of clinical investigation.

[21]  A Krogh,et al.  The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue , 1919, The Journal of physiology.

[22]  F. Lim,et al.  Microencapsulated islets as bioartificial endocrine pancreas. , 1980, Science.

[23]  Charles L. Cooney,et al.  L-Glutamine Enzyme Electrode for On-Line Mammalian Cell Culture Process Control , 1987 .

[24]  H. Eagle,et al.  The effect of environmental pH on the growth of normal and malignant cells , 1973, Journal of cellular physiology.

[25]  Michael W. Glacken Development of mathematical descriptions of mammalian cell culture kinetics for the optimization of fed-batch bioreactors , 1987 .

[26]  Alan S. Michaels,et al.  A theoretical model for enzymatic catalysis using asymmetric hollow fiber membranes , 1974 .

[27]  D. Seligson,et al.  The measurement of ammonia in whole blood, erythrocytes, and plasma. , 1957, The Journal of laboratory and clinical medicine.

[28]  C. Kleinstreuer,et al.  Modeling and simulation of bioreactor process dynamics , 1984 .

[29]  A. Sinskey,et al.  An Analysis of Intra‐Versus Extracapillary Growth In a Hollow Fiber Reactor , 1987 .

[30]  G. Belfort,et al.  Enhanced Nutrient Transport in Hollow Fiber Perfusion Bioreactors: A Theoretical Analysis , 1987 .