On the trade-off between aviation NOx and energy efficiency

This study aims to assess the trade-off between the ever-increasing energy efficiency of modern aero-engines and their   performance. The work builds on performance models previously developed to o ...

[1]  Konstantinos Kyprianidis,et al.  Assessment of Future Aero-engine Designs With Intercooled and Intercooled Recuperated Cores , 2011 .

[2]  Aristide F. Massardo,et al.  Recuperated gas turbine aeroengines, part I: early development activities , 2008 .

[3]  Konstantinos Kyprianidis,et al.  Consistent Conceptual Design and Performance Modeling of Aero Engines , 2015 .

[4]  Andrew Rolt,et al.  Progress In Gas Turbine Performance , 2014 .

[5]  Lloyd R. Jenkinson,et al.  Civil jet aircraft design , 1999 .

[6]  A. Lefebvre Gas Turbine Combustion , 1983 .

[7]  Douglas Probert,et al.  Prospects for aero gas-turbine diagnostics: a review , 2004 .

[8]  T. Schilling,et al.  Vergleich des Emissionsverhaltens effizienter Hochbypasstriebwerke mittlerer Schubgröße für den ICAO LTO-Zyklus und Flugmissionen , 2003 .

[9]  D. Kretschmer,et al.  The Prediction of Thermal NOx in Gas Turbines , 1985 .

[10]  Pericles Pilidis,et al.  Introduction of Intercooling in a High Bypass Jet Engine , 2000 .

[11]  Konstantinos Kyprianidis,et al.  Assessment of the performance potential for a two-pass cross flow intercooler for aero engine applications , 2013 .

[12]  Waldemar Lazik,et al.  Low NOx Combustor Development for the Engine3E Core Engine Demonstrator , 2007 .

[13]  Konstantinos Kyprianidis,et al.  Optimization Study of an Intercooled Recuperated Aero-Engine , 2013 .

[14]  Stefano Boggia,et al.  Intercooled Recuperated Gas Turbine Engine Concept , 2005 .

[15]  T. Becker,et al.  The Capability of Different Semianalytical Equations for Estimation of NOx Emissions of Gas Turbines , 1994 .

[16]  Egbert Torenbeek,et al.  Synthesis of subsonic airplane design: an introduction to the preliminary design, of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic design, propulsion and performance , 1976 .

[17]  Alexander Koch,et al.  Climate Optimized Air Transport , 2012 .

[18]  Tomas Grönstedt,et al.  Design and Analysis of an Intercooled Turbofan Engine , 2010 .

[19]  Tom Otten,et al.  Gegenüberstellung des Emissions-Verbesserungspotentials von Brennkammertechnologien und anderen Weiterentwicklungen am Lufttransportsystem , 2006 .

[20]  Hukam Chand Mongia,et al.  NOx model for lean combustion concept , 1995 .

[21]  N. Aretakis,et al.  Modeling Contra-Rotating Turbomachinery Components for Engine Performance Simulations: The Geared Turbofan With Contra-Rotating Core Case , 2012 .

[22]  S. Bernstein,et al.  NOx Exhaust Emissions for Gas-Fired Turbine Engines , 1990 .

[23]  Konstantinos Kyprianidis,et al.  Multi-disciplinary conceptual design of future jet engine systems , 2010 .

[24]  Michael Foust,et al.  Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines , 2012 .

[25]  M. A. da Cunha Alves,et al.  An insight on intercooling and reheat gas turbine cycles , 2001 .

[26]  Hans-Frieder Vogt,et al.  Altitude Testing of the E3E Core Engine , 2011 .

[27]  A. Wulff,et al.  Technology review of aeroengine pollutant emissions , 1997 .

[28]  Hailong Li,et al.  Techno-economic evaluation of the evaporative gas turbine cycle with different CO2 capture options , 2012 .

[29]  Nick J. Baker,et al.  Intercooled turbofan engine design and technology research in the EU Framework 6 NEWAC programme , 2009 .

[30]  N. K. Rizk,et al.  Semianalytical Correlations for NOx, CO, and UHC Emissions , 1993 .

[31]  Aristide F. Massardo,et al.  Recuperated gas turbine aeroengines, part II: engine design studies following early development testing , 2008 .

[32]  G. Pellischek,et al.  Compact heat exchanger technology for aero engines , 1991 .

[33]  S. Bake,et al.  Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland , 2008 .

[34]  A. H. Lefebvre,et al.  Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions , 1984 .

[35]  Konstantinos Kyprianidis,et al.  Analysis of an Intercooled Recuperated Aero-engine , 2011 .

[36]  A. Mellor,et al.  Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilization , 1980 .

[37]  Aristide F. Massardo,et al.  Recuperated gas turbine aeroengines. Part III: engine concepts for reduced emissions, lower fuel consumption, and noise abatement , 2008 .

[38]  Pericles Pilidis,et al.  Techno-economic and environmental risk analysis for advanced marine propulsion systems , 2012 .

[39]  Konstantinos Kyprianidis,et al.  Advances in Gas Turbine Technology , 2014 .

[40]  K. Mathioudakis,et al.  Evaluation of water injection effect on compressor and engine performance and operability , 2010 .

[41]  Andrew Rolt,et al.  On the Optimization of a Geared Fan Intercooled Core Engine Design , 2014 .

[42]  K. Mathioudakis,et al.  Correlations Adaptation for Optimal Emissions Prediction , 2007 .

[43]  Nick J. Baker,et al.  New Environmental Friendly Aero Engine Core Concepts , 2007 .

[44]  Erik Dick,et al.  RAISING CYCLE EFFICIENCY BY INTERCOOLING IN AIR-COOLED GAS TURBINES , 2006 .

[45]  Waldemar Lazik,et al.  The Engine 3E Core Engine , 2008 .

[46]  Vishal Sethi,et al.  On the trade-off between minimum fuel burn and maximum time between overhaul for an intercooled aeroengine , 2014 .

[47]  Linda Larsson,et al.  Conceptual Design and Mission Analysis for a Geared Turbofan and an Open Rotor Configuration , 2011 .

[48]  Anders Lundbladh,et al.  Heat Exchanger Weight and Efficiency Impact on Jet Engine Transport Applications , 2003 .

[49]  G. J. Sturgess,et al.  Emissions Reduction Technologies for Military Gas Turbine Engines , 2005 .

[50]  Changlie Wey,et al.  Experimental Investigation of a Multiplex Fuel Injector Module with Discrete Jet Swirlers for Low Emission Combustors , 2013 .

[51]  Joyce E. Penner,et al.  Aviation and the global atmosphere : a special report of IPCC Working Groups I and III in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer , 1999 .

[52]  Andrew Rolt,et al.  Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine , 2013 .

[53]  Paul Fletcher,et al.  Gas Turbine Performance , 1998 .

[54]  Hukam Chand Mongia Commercial Propulsion Engines Emissions , 2010 .

[55]  Dries Verstraete,et al.  Impact of heat transfer on the performance of micro gas turbines , 2015 .

[56]  Panagiotis Laskaridis Performance investigations and systems architectures for the More Electric Aircraft , 2004 .

[57]  Stephen Ogaji,et al.  EVA : A Tool for EnVironmental Assessment of Novel Propulsion Cycles , 2008 .

[58]  R. Harrison,et al.  Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review , 2014, Atmospheric Environment.

[59]  Vishal Sethi,et al.  Techno-economic viability assessments of greener propulsion technology under potential environmental regulatory policy scenarios , 2015 .

[60]  Robert C. Steele,et al.  Simplified Models for NOx Production Rates in Lean-Premixed Combustion , 1994 .

[61]  Andreas Döpelheuer Aircraft emission parameter modelling , 2000 .