Density Functional Characterization of the Electronic Structures and Band Bending of Rutile RuO2/TiO2(110) Heterostructures

The enhanced catalytic and photocatalytic activities of a RuO2 layer deposited on the TiO2(110) surface were examined by constructing model RuO2/TiO2(110) heterostructures with and without oxygen vacancies and performing density functional calculations. The formation of the heterojunction only weakly affects the atomic structure of the interface due to a pseudomorphic deposition but causes a strong electron density accumulation in the interface as well as a bending of the valence and conduction bands of TiO2. The electron accumulation in the interface creates a strong internal electric field, which helps to effectively separate photogenerated electron–hole pairs during a photocatalytic process. Finally, we report on the catalytic role of oxygen vacancies at the surface.

[1]  W. Jaegermann,et al.  Improved photocatalytic activity in RuO2-ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. , 2015, Physical chemistry chemical physics : PCCP.

[2]  C. Olivier,et al.  Tetrazole as a New Anchoring Group for the Functionalization of TiO2 Nanoparticles: A Joint Experimental and Theoretical Study , 2014 .

[3]  W. Jaegermann,et al.  Preparation of RuO2/TiO2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations , 2013 .

[4]  Jun Hee Lee,et al.  Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3superlattices , 2013 .

[5]  P. Delugas,et al.  Large band offset as driving force of two-dimensional electron confinement: The case of SrTiO3/SrZrO3 interface , 2013, 1309.4965.

[6]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[7]  E. Tsymbal,et al.  Polarization discontinuity induced two-dimensional electron gas at ZnO/Zn(Mg)O interfaces: A first-principles study , 2013 .

[8]  V. Eyert,et al.  Metal-insulator transition at the LaAlO3/SrTiO3 interface revisited: A hybrid functional study , 2013, 1307.4352.

[9]  S. Ogut,et al.  First-principles study of compensation mechanisms in negatively charged LaGaO 3 /MgAl 2 O 4 interfaces , 2013 .

[10]  Jaichan Lee,et al.  Orbital-selective charge transfer at oxygen-deficient LaAlO3/SrTiO3(001) interfaces , 2013 .

[11]  A. Janotti,et al.  Controlling the density of the two-dimensional electron gas at the SrTiO 3 /LaAlO 3 interface , 2012, 1212.5947.

[12]  Jing Zhuang,et al.  Size effects in Atomic-Level Epitaxial Redistribution Process of RuO2 over TiO2 , 2012, Scientific Reports.

[13]  M. Weinert,et al.  Atomic and electronic structure of polar Fe2O3(0001)/MgO(111) interfaces , 2012 .

[14]  Ping Liu,et al.  Special Chemical Properties of RuOx Nanowires in RuOx/TiO2(110): Dissociation of Water and Hydrogen Production , 2012 .

[15]  Ping Liu,et al.  Determining the behavior of RuO(x) nanoparticles in mixed-metal oxides: structural and catalytic properties of RuO2/TiO2(110) surfaces. , 2011, Angewandte Chemie.

[16]  W. Butler,et al.  Electronic and magnetic structure of CrO2-RuO2interfaces , 2011 .

[17]  L. Robben,et al.  Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  W. Pickett,et al.  Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3(001) through polar distortion. , 2008, Physical review letters.

[19]  J. Sanz,et al.  Methanol and Water Dissociation on TiO2 (110): The Role of Surface Oxygen , 2008 .

[20]  B. D. Kay,et al.  Imaging water dissociation on TiO2(110): Evidence for inequivalent geminate OH groups. , 2006, The journal of physical chemistry. B.

[21]  G. Thornton,et al.  Noncontact atomic force microscopy imaging of water dissociation products on TiO2(110) , 2006 .

[22]  R. Ahuja,et al.  Electronic and optical properties of RuO 2 and IrO 2 , 2006 .

[23]  B. D. Kay,et al.  Imaging adsorbate O-H bond cleavage: methanol on TiO2(110). , 2006, Journal of the American Chemical Society.

[24]  Hiroshi Onishi,et al.  Direct visualization of defect-mediated dissociation of water on TiO2(110) , 2006 .

[25]  B. Hammer,et al.  Formation and splitting of paired hydroxyl groups on reduced TiO2(110). , 2006, Physical review letters.

[26]  R. Cava,et al.  Synthesis, structure and physical properties of Ru ferrites: BaMRu5O11 (M=Li and Cu) and BaM′2Ru4O11 (M′=Mn, Fe and Co) , 2006 .

[27]  E. Dagotto Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[28]  Qiang Sun,et al.  Hydrogen adsorption at RuO2(110): Density-functional calculations , 2004 .

[29]  Satoshi Okamoto,et al.  Electronic reconstruction at an interface between a Mott insulator and a band insulator , 2004, Nature.

[30]  H. Over,et al.  The role of weakly bound on-top oxygen in the catalytic CO oxidation reaction over RuO2(110). , 2004, Journal of the American Chemical Society.

[31]  G. Ertl,et al.  Interaction of CO with the stoichiometric RuO2(110) surface , 2003 .

[32]  R. Hock,et al.  Intergrown niobian rutile phases with Sc- and W-rich ferrocolumbite: An electron-microprobe and Rietveld study , 2003 .

[33]  E. Lundgren,et al.  Direct imaging of catalytically important processes in the oxidation of CO over RuO2(110). , 2001, Journal of the American Chemical Society.

[34]  G. Ertl,et al.  The oxidation of CO on RuO2(110) at room temperature , 2001 .

[35]  A. Alavi,et al.  Mechanism for the high reactivity of CO oxidation on a ruthenium–oxide , 2001 .

[36]  D. Goodman,et al.  First-principles study of the adsorption of CO on TiO{sub 2}(110) , 2001 .

[37]  Varga,et al.  Atomic-scale structure and catalytic reactivity of the RuO(2)(110) surface , 2000, Science.

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  Chelikowsky,et al.  Electronic and structural properties of RuO2. , 1993, Physical review. B, Condensed matter.

[42]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[43]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[44]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[45]  W. Pickett,et al.  Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO(3)/SrTiO(3) interface , 2008 .

[46]  W. Pickett,et al.  Charge localization or itineracy at LaAlO3/SrTiO3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons , 2006 .

[47]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .