Determining synthesis region of the single wall carbon nanotubes in arc plasma volume

Abstract Arc discharge is one of the most efficient and environmental friendly method to synthesize Single Wall Carbon Nanotube (SWCNT). However, due to the ultra-fast synthesis procedure, localization of the SWCNT synthesis in an arc discharge plasma volume in situ has been a long standing problem. This relates to the ability of controlling volumetric synthesis of nanostructures in plasmas in general. In order to better understand the mechanism of the nanotube growth in plasma, we have developed an actuator driven high-speed system that is able to extract material from the arc plasma volume during the synthesis procedure. The majority of the SWCNTs produced using arc discharge method are semiconducting with diameter of about 1.5 nm. It is shown that the growth region of SWCNTs is between 3 mm and 11 mm away from the center of the arc discharge. Dependent on the origin, the length of SWCNTs increases non-monotonically up to 500 nm, while diameter and chirality only slightly depend on the growth position.

[1]  Michael Keidar,et al.  Role of substrate temperature at graphene synthesis in an arc discharge , 2015 .

[2]  M. Dresselhaus,et al.  Science and applications of single-nanotube Raman spectroscopy. , 2003, Journal of nanoscience and nanotechnology.

[3]  Igor Levchenko,et al.  Deterministic shape control in plasma-aided nanotip assembly , 2006 .

[4]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[5]  Igor Levchenko,et al.  Control of core-shell structure and elemental composition of binary quantum dots , 2007 .

[6]  M. Dresselhaus,et al.  Linewidth of the Raman features of individual single-wall carbon nanotubes , 2002 .

[7]  Alan M. Cassell,et al.  Carbon nanotube growth by PECVD: a review , 2003 .

[8]  M. Keidar,et al.  Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials , 2016 .

[9]  Michael Keidar,et al.  Synthesis of 2D materials in arc plasmas , 2015 .

[10]  M. Keidar,et al.  Voltage-current characteristics of an anodic arc producing carbon nanotubes , 2008 .

[11]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[12]  M. Keidar,et al.  Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene , 2012 .

[13]  Sundara Ramaprabhu,et al.  Welcome to the Graphene , 2013 .

[14]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[15]  Michael Keidar,et al.  Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge , 2008 .

[16]  Kuzmany,et al.  Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes , 2000, Physical review letters.

[17]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[18]  Michael Keidar,et al.  Factors affecting synthesis of single wall carbon nanotubes in arc discharge , 2007 .

[19]  G. Cao,et al.  Template-Based Synthesis of Nanorod or Nanowire Arrays , 2010 .

[20]  Michael Keidar,et al.  Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes , 2009 .

[21]  Chao Li,et al.  Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires , 2003 .

[22]  Michael Keidar,et al.  Paper-based ultracapacitors with carbon nanotubes-graphene composites , 2014 .

[23]  M. Keidar,et al.  Tailored distribution of single-wall carbon nanotubes from arc plasma synthesis using magnetic fields. , 2010, ACS nano.

[24]  J. Lienhard A heat transfer textbook , 1981 .

[25]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[26]  M. S. Dresselhausa,et al.  Raman spectroscopy of carbon nanotubes , 2004 .

[27]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[28]  M. Keidar,et al.  A model of carbon nanotube synthesis in arc discharge plasmas , 2012 .

[29]  Michael Keidar,et al.  Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge , 2008 .

[30]  Riichiro Saito,et al.  Characterizing carbon nanotube samples with resonance Raman scattering , 2003 .

[31]  Chen Feng,et al.  Cross‐Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles: A Novel Binder‐Free and High‐Capacity Anode Material for Lithium‐Ion Batteries , 2009 .

[32]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[33]  Joe Hodkiewicz,et al.  Characterizing Carbon Materials with Raman Spectroscopy , 2010 .

[34]  Dawei Liu,et al.  Template-based synthesis of nanorod, nanowire, and nanotube arrays. , 2008, Advances in colloid and interface science.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Anusorn Kongkanand,et al.  Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. , 2007, Nano letters.

[37]  H. Kataura,et al.  Purity and defect characterization of single-wall carbon nanotubes using Raman spectroscopy , 2011 .

[38]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[39]  M. Keidar,et al.  Numerical simulation of carbon arc discharge for nanoparticle synthesis , 2012 .