Arg Teach - A Learning Tool for Argumentation Theory

Following the increasing influence of the formal study of argumentation in AI research, Abstract Argumentation (AA) is now taught as part of Computer Science degrees at various universities. To support the teaching of AA we present ARGTEACH, an interactive intelligent tutor that facilitates the learning of different labelling semantics in AA. The user assigns the labels in, out, and undec to arguments in an AA framework displayed as a graph, with the aim to find all complete labellings. The user then determines which of the complete labellings are grounded, preferred, semi-stable, or stable. During the labelling process, ARGTEACH supports the user by providing hints about possible next labelling steps, using a novel method for computing complete labellings, and by checking whether the labelling done so far is correct.

[1]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[2]  Beverly Park Woolf,et al.  Building Intelligent Interactive Tutors: Student-centered Strategies for Revolutionizing E-learning , 2008 .

[3]  Dov M. Gabbay,et al.  A Logical Account of Formal Argumentation , 2009, Stud Logica.

[4]  Stefan Woltran,et al.  ASPARTIX: Implementing Argumentation Frameworks Using Answer-Set Programming , 2008, ICLP.

[5]  John Fox,et al.  Dungine: A Java Dung Reasoner , 2008, COMMA.

[6]  Jonathan Lawry,et al.  Symbolic and Quantitative Approaches to Reasoning with Uncertainty , 2009 .

[7]  Gabriella Pigozzi,et al.  An implementation of basic argumentation components , 2011, AAMAS.

[8]  Pietro Baroni,et al.  An introduction to argumentation semantics , 2011, The Knowledge Engineering Review.

[9]  Bart Verheij,et al.  A Labeling Approach to the Computation of Credulous Acceptance in Argumentation , 2007, IJCAI.

[10]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[11]  Bernd Weissmuller Educative Assessment Designing Assessments To Inform And Improve Student Performance , 2016 .

[12]  Martin Caminada,et al.  Grounded Semantics as Persuasion Dialogue , 2012, COMMA.

[13]  Chris Reed,et al.  Araucaria: Software for Argument Analysis, Diagramming and Representation , 2004, Int. J. Artif. Intell. Tools.

[14]  Sanjay Modgil,et al.  Proof Theories and Algorithms for Abstract Argumentation Frameworks , 2009, Argumentation in Artificial Intelligence.

[15]  Martin Caminada An Algorithm for Computing Semi-stable Semantics , 2007, ECSQARU.

[16]  Federico Chesani,et al.  Argumentation in the Semantic Web , 2007, IEEE Intelligent Systems.

[17]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[18]  Katie Atkinson,et al.  Algorithms for decision problems in argument systems under preferred semantics , 2014, Artif. Intell..

[19]  Trevor J. M. Bench-Capon Representation of Case Law as an Argumentation Framework , 2002 .

[20]  Grant Wiggins,et al.  Educative Assessment: Designing Assessments to Inform and Improve Student Performance , 1998 .