High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions

High-quality CH3NH3PbI3 perovskite films were directly prepared on simple treated ITO glass in air under a relative humidity of lower than 30%. Due to efficient charge transport at the ITO (or PCBM)/CH3NH3PbI3 interfaces, the champion and average PCEs of 12.78% and 10.85% are obtained in the inverted perovskite solar cells without any hole transport layer, which provides a promising method for low-cost and easy processing industrialization of perovskite solar cells.

[1]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[2]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[3]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[4]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[5]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[6]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[7]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[8]  Jie Zheng,et al.  Bulk heterojunction perovskite hybrid solar cells with large fill factor , 2015 .

[9]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[10]  Renqiang Yang,et al.  Efficient planar perovskite solar cells with large fill factor and excellent stability , 2015 .

[11]  Ming-Hsien Li,et al.  Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[12]  Jing Guo,et al.  Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells. , 2015, ACS applied materials & interfaces.

[13]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[14]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[15]  W. Shen,et al.  Facile preparation of TiOX film as an interface material for efficient inverted polymer solar cells , 2014 .

[16]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[17]  Yongfang Li,et al.  Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites , 2015 .

[18]  Xudong Yang,et al.  Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells , 2015 .

[19]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[20]  Peng Wang,et al.  High‐Performance Liquid and Solid Dye‐Sensitized Solar Cells Based on a Novel Metal‐Free Organic Sensitizer , 2008 .

[21]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[22]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[23]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[24]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[25]  Peng Wang,et al.  Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. , 2015, Journal of the American Chemical Society.

[26]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[27]  Yang Yang,et al.  Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process , 2015 .

[28]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[29]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[30]  O. Voznyy,et al.  Doping Control Via Molecularly Engineered Surface Ligand Coordination , 2013, Advanced materials.

[31]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[32]  K. Wong,et al.  Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. , 2015, ACS nano.

[33]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[34]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[35]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[36]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[37]  Zhiqiang Gao,et al.  Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer , 2002 .

[38]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[39]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[40]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[41]  Tao Chen,et al.  Layer‐by‐Layer Growth of CH3NH3PbI3−xClx for Highly Efficient Planar Heterojunction Perovskite Solar Cells , 2015, Advanced materials.

[42]  Liying Yang,et al.  Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative , 2010 .

[43]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[44]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.