A family of Crouzeix–Raviart finite elements in 3D

In this paper, we will develop a family of non-conforming “Crouzeix–Raviart” type finite elements in three dimensions. They consist of local polynomials of maximal degree [Formula: see text] on simplicial finite element meshes while certain jump conditions are imposed across adjacent simplices. We will prove optimal a priori estimates for these finite elements. The characterization of this space via jump conditions is implicit and the derivation of a local basis requires some deeper theoretical tools from orthogonal polynomials on triangles and their representation. We will derive these tools for this purpose. These results allow us to give explicit representations of the local basis functions. Finally, we will analyze the linear independence of these sets of functions and discuss the question whether they span the whole non-conforming space.

[1]  Yuan Xu,et al.  Connection coefficients for classical orthogonal polynomials of several variables , 2015, 1506.04682.

[2]  M. Fortin A three-dimensional quadratic nonconforming element , 1985 .

[3]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[4]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  M. Crouzeix,et al.  Nonconforming finite elements for the Stokes problem , 1989 .

[7]  Gisbert Stoyan,et al.  Crouzeix-Velte decompositions for higher-order finite elements , 2006, Comput. Math. Appl..

[8]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[9]  S. C. Brenner,et al.  Forty Years of the Crouzeix‐Raviart element , 2015 .

[10]  Patrick Ciarlet,et al.  Domain decomposition methods for the diffusion equation with low-regularity solution , 2017, Comput. Math. Appl..

[11]  M. Fortin,et al.  A non‐conforming piecewise quadratic finite element on triangles , 1983 .

[12]  Jean-Luc Guermond,et al.  Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains , 2013 .

[13]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[14]  Philippe G. Ciarlet,et al.  Intrinsic finite element methods for the computation of fluxes for Poisson’s equation , 2016, Numerische Mathematik.

[15]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[16]  Gisbert Stoyan,et al.  Gauss-Legendre elements: a stable, higher order non-conforming finite element family , 2007, Computing.

[17]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  Charles F. Dunkl,et al.  Orthogonal Polynomials with Symmetry of Order Three , 1984, Canadian Journal of Mathematics.