Testing for irritation with a multifactorial approach: comparison of eight non‐invasive measuring techniques on five different irritation types

Background Non‐invasive bioengineering methods are widely used in the assessment of irritant skin reactions.

[1]  H. Maibach,et al.  Sodium – lauryl – sulphate – induced cutaneous irritation , 1988, Contact dermatitis.

[2]  J. Fluhr,et al.  Tolerance Profile of Retinol, Retinaldehyde and Retinoic Acid under Maximized and Long-Term Clinical Conditions , 1999, Dermatology.

[3]  Andreas Bircher,et al.  Guidelines for measurement of cutaneous blood flow by laser Doppler flowmetry , 1994, Contact dermatitis.

[4]  H. Maibach,et al.  Stripped skin model to predict irritation potential of topical agents in vivo in humans. , 1998, International journal of dermatology.

[5]  T. Agner,et al.  Guidelines for transepidermal water loss (TEWL) measurement , 1990, Contact dermatitis.

[6]  D. Van Neste,et al.  Monitoring of skin response to sodium lauryl sulphate: clinical scores versus bioengineering methods. , 1992, Contact dermatitis.

[7]  S. Seidenari,et al.  Ultrasound description and quantification of irritant reactions induced by dithranol at different concentrations , 1996, Contact dermatitis.

[8]  V. Shah,et al.  Bioavailability of Clobetasol Propionate – Quantification of Drug Concentrationsin the Stratum Corneum by Dermatopharmacokinetics UsingTape Stripping , 1999, Skin Pharmacology and Physiology.

[9]  J. Schultz,et al.  Structure and property development in poly(p‐phenylene terephthalamide) during heat treatment under tension , 1995 .

[10]  H. Maibach,et al.  Acute irritant contact dermatitis: recovery time in man , 1997, Contact dermatitis.

[11]  T. Agner Basal transepidermal water loss, skin thickness, skin blood flow and skin colour in relation to sodium‐lauryl‐sulphate‐ induced irritation in normal skin , 1991, Contact dermatitis.

[12]  P. Andersen,et al.  Skin irritation in man: a comparative bioengineering study using improved reflectance spectroscopy , 1995, Contact dermatitis.

[13]  S. Ollmar,et al.  Electrical impedance compared with other non‐invasive bioengineering techniques and visual scoring for detection of irritation in human skin , 1994, The British journal of dermatology.

[14]  E. Berardesca,et al.  Glycerol accelerates recovery of barrier function in vivo. , 1999, Acta dermato-venereologica.

[15]  H. Maibach,et al.  Functional changes in human stratum corneum induced by topical glycolic acid: comparison with all-trans retinoic acid. , 1995, Acta dermato-venereologica.

[16]  R. Happle,et al.  Skin susceptibility to dithranol: contact allergy or irritation? , 1999, European journal of dermatology : EJD.

[17]  H. Maibach,et al.  The sodium lauryl sulfate model: an overview , 1995, Contact dermatitis.

[18]  T. Agner,et al.  Skin reactions to irritants assessed by non‐invasive bioengineering methods , 1989, Contact dermatitis.

[19]  T. Agner,et al.  Different skin irritation abilities of different qualities of sodium lauryl sulphate , 1989, Contact dermatitis.

[20]  Harold R. Lindman Analysis of Variance in Experimental Design , 1991 .

[21]  J. Serup,et al.  Guidelines on sodium lauryl sulfate (SLS) exposure tests , 1997, Contact dermatitis.

[22]  Transepidermal water vapour loss is not increased during and following dithranol irritation , 1995 .

[23]  L. Molin,et al.  Effects of single doses of UVA, UVB, and UVC on skin blood flow, water content, and barrier function measured by laser-Doppler flowmetry, optothermal infrared spectrometry, and evaporimetry. , 1988, Photo-dermatology.

[24]  K. Wilhelm,et al.  Guidelines for measurement skin colour and erythema A report from the Standardization Group of the European Society of Contact Dermatitis * , 1996, Contact dermatitis.

[25]  T. Agner,et al.  Sodium lauryl sulphate for irritant patch testing--a dose-response study using bioengineering methods for determination of skin irritation. , 1990, The Journal of investigative dermatology.

[26]  G. Piérard,et al.  EEMCO guidance for the assessment of skin colour. , 1998, Journal of the European Academy of Dermatology and Venereology : JEADV.

[27]  O. Kuss,et al.  Proper statistical analysis of transepidermal water loss (TEWL) measurements in bioengineering studies , 1998, Contact dermatitis.

[28]  E. Berardesca,et al.  EEMCO guidance for the assessment of stratum corneum hydration: electrical methods , 1997, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[29]  L. Packer,et al.  Sebaceous gland secretion is a major physiologic route of vitamin E delivery to skin. , 1999, The Journal of investigative dermatology.

[30]  E. Berardesca,et al.  Comparative study of five instruments measuring stratum corneum hydration (Corneometer CM 820 and CM 825, Skicon 200, Nova DPM 9003, DermaLab). Part II. In vivo , 1999 .

[31]  E. Berardesca,et al.  Comparative study of five instruments measuring stratum corneum hydration (Corneometer CM 820 and CM 825, Skicon 200, Nova DPM 9003, DermaLab). Part I. In vitro , 1999 .

[32]  I. Fumal,et al.  Split-Face Clinical and Bio-Instrumental Comparison of 0.1% Adapalene and 0.05% Tretinoin in Facial Acne , 1999, Dermatology.

[33]  E. Berardesca,et al.  The modulation of skin irritation , 1994, Contact dermatitis.

[34]  H. Maibach,et al.  Factors predisposing to cutaneous irritation. , 1990, Dermatologic clinics.