Structure of exoplanets

Significance Planets around other stars, or exoplanets, are now known to be common in our galaxy. Exoplanets span a much wider range of physical conditions than the planets in our solar system, and include extremely puffy gas giants to compact rocky planets that can have densities as high as that of iron. The diversity of exoplanets allows us to place the planets of our solar system in a broader perspective, and invites further research in the nascent field of comparative exoplanetology. Here we review the continuum of detected planets, from the gas giants, which are composed mostly of hydrogen, to smaller worlds where water may provide more of their mass, to rock-iron worlds in some ways similar to Earth. The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems—from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth.

[1]  M. Turatto,et al.  A Planet Finder instrument for the VLT , 2005, Proceedings of the International Astronomical Union.

[2]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[3]  G. Schaber,et al.  Impact Craters on Venus: What are they Telling Us? , 1991 .

[4]  T. Encrenaz,et al.  Neptune's atmospheric composition from AKARI infrared spectroscopy , 2010, 1003.5571.

[5]  David M. Kipping,et al.  A simple, quantitative method to infer the minimum atmospheric height of small exoplanets , 2013, 1306.3221.

[6]  John C. Geary,et al.  Alignment of the stellar spin with the orbits of a three-planet system , 2012, Nature.

[7]  C. Hayashi,et al.  Instability of a Gaseous Envelope Surrounding a Planetary Core and Formation of Giant Planets , 1978 .

[8]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[9]  R. Helled,et al.  WHAT DO WE REALLY KNOW ABOUT URANUS AND NEPTUNE? , 2012, 1208.5551.

[10]  A. Burrows,et al.  The theory of brown dwarfs and extrasolar giant planets , 2001, astro-ph/0103383.

[11]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[12]  Lisa Poyneer,et al.  The Gemini Planet Imager , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  Zhaohuan Zhu,et al.  FAST RISE OF “NEPTUNE-SIZE” PLANETS (4–8 R⊕) FROM P ∼ 10 TO ∼250 DAYS—STATISTICS OF KEPLER PLANET CANDIDATES UP TO ∼0.75 AU , 2012, 1212.4853.

[14]  J. Akrman,et al.  Dyeing behavior of polypropylene blend fiber. III. Effect of drawing on dyeability , 1999 .

[15]  James W. Head,et al.  Venus: Timing and rates of geologic activity , 2002 .

[16]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[17]  S. Seager,et al.  A FRAMEWORK FOR QUANTIFYING THE DEGENERACIES OF EXOPLANET INTERIOR COMPOSITIONS , 2009, 0912.3288.

[18]  S. Seager,et al.  Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres , 2007, 0710.4941.

[19]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[20]  Pierre Le Sidaner,et al.  Defining and cataloging exoplanets: the exoplanet.eu database , 2011, 1106.0586.

[21]  I. Pater,et al.  Constraining the origins of Neptune’s carbon monoxide abundance with CARMA millimeter-wave observations , 2012, 1301.1990.

[22]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[23]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[24]  Y. Lithwick,et al.  OHMIC HEATING SUSPENDS, NOT REVERSES, THE COOLING CONTRACTION OF HOT JUPITERS , 2012, 1202.0026.

[25]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[26]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[27]  A. Boss GIANT PLANET FORMATION BY DISK INSTABILITY IN LOW MASS DISKS? , 2010, 1010.5819.

[28]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[29]  C. Sotin,et al.  Mass–radius curve for extrasolar Earth-like planets and ocean planets , 2007 .

[30]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[31]  Angioletta Coradini,et al.  The Juno Mission , 1989, Proceedings of the International Astronomical Union.

[32]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[33]  D. Sasselov,et al.  THE ATMOSPHERIC SIGNATURES OF SUPER-EARTHS: HOW TO DISTINGUISH BETWEEN HYDROGEN-RICH AND HYDROGEN-POOR ATMOSPHERES , 2008, 0808.1902.

[34]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[35]  J. Fortney,et al.  New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data , 2012, 1207.2309.

[36]  Portugal,et al.  Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b , 2007, 0707.2261.

[37]  A. Burrows,et al.  Day and night side core cooling of a strongly irradiated giant planet , 2011, 1111.5478.

[38]  A. Burrows,et al.  THERMAL PROCESSES GOVERNING HOT-JUPITER RADII , 2013, 1303.0293.

[39]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[40]  B. Militzer,et al.  AB INITIO EQUATION OF STATE FOR HYDROGEN–HELIUM MIXTURES WITH RECALIBRATION OF THE GIANT-PLANET MASS–RADIUS RELATION , 2013, 1302.4691.

[41]  Jonathan J. Fortney,et al.  HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND , 2012, 1205.0010.

[42]  J. Fortney,et al.  The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.

[43]  Cambridge,et al.  A Detailed Model Grid for Solid Planets from 0.1 through 100 Earth Masses , 2013, 1301.0818.

[44]  Marley,et al.  On the Radii of Close-in Giant Planets , 2000, The Astrophysical journal.

[45]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[46]  R. Perna,et al.  OHMIC DISSIPATION IN THE ATMOSPHERES OF HOT JUPITERS , 2010, 1009.3273.

[47]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[48]  J. Fortney,et al.  INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS , 2009, 0907.1268.

[49]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[50]  Suzanne E. Smrekar,et al.  Constraints on mantle plumes on Venus: Implications for volatile history , 2012 .

[51]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[52]  T. Guillot,et al.  Composition and fate of short-period super-Earths: The case of CoRoT-7b , 2009, 0907.3067.

[53]  P. Arras,et al.  THERMAL TIDES IN FLUID EXTRASOLAR PLANETS , 2009, 0912.2313.

[54]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[55]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[56]  Debra A. Fischer,et al.  The Exoplanet Orbit Database , 2010, 1012.5676.

[57]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[58]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[59]  Adrian Lenardic,et al.  ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS , 2012 .

[60]  Diana Valencia,et al.  Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? , 2007, 0704.3454.

[61]  E. Turner,et al.  Bayesian analysis of the astrobiological implications of life’s early emergence on Earth , 2011, Proceedings of the National Academy of Sciences.

[62]  T. Guillot,et al.  SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS , 2011, 1101.0606.

[63]  C. Sotin,et al.  Terrestrial Planet Interiors , 2010 .

[64]  John Asher Johnson,et al.  ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES , 2011, 1101.5630.

[65]  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[66]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[67]  M. R. Haas,et al.  DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER , 2011, 1109.1611.

[68]  Louis Moresi,et al.  Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus , 1998 .

[69]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[70]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[71]  Howard Isaacson,et al.  THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX , 2013, 1303.2150.

[72]  E. Salpeter,et al.  The mass-radius relation for cold spheres of low mass , 1969 .

[73]  Debra A. Fischer,et al.  A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436 , 2004 .

[74]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[75]  R. Redmer,et al.  Interior structure models of GJ 436b , 2010, 1002.4447.

[76]  David J. Stevenson,et al.  Styles of mantle convection and their influence on planetary evolution , 2003 .

[77]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[78]  S. Seager,et al.  THREE POSSIBLE ORIGINS FOR THE GAS LAYER ON GJ 1214b , 2009, 0912.3243.

[79]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[80]  Konstantin Batygin,et al.  INFLATING HOT JUPITERS WITH OHMIC DISSIPATION , 2010, 1002.3650.

[81]  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.