Quantitative imaging of shunts in organic photovoltaic modules using lock-in thermography

Abstract Thermographic methods are widely established to detect shunts in photovoltaic technologies. In all methods the cell has to be directly accessible to determine quantitative shunt values. In this manuscript a precise method is presented to determine shunt values in solar modules consisting of series connected bulk-heterojunction organic solar cells without the need to access the single cells separately. It will be shown that, although parallel resistances in organic solar cells show a strong dependence on the illumination intensity, the shunts that are detected using illuminated lock-in-thermography are strongly ohmic and therefore can be assigned a distinct ohm value.

[1]  Frederik C. Krebs,et al.  Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate , 2004 .

[2]  Suren A. Gevorgyan,et al.  Interlaboratory outdoor stability studies of flexible roll-to-roll coated organic photovoltaic modules: Stability over 10,000 h , 2013 .

[3]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[4]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[5]  C. Buerhop-Lutz,et al.  Highly sensitive non-contact shunt detection of organic photovoltaic modules , 2012 .

[6]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[7]  Christoph J. Brabec,et al.  Highly efficient organic tandem solar cells: a follow up review , 2013 .

[8]  Wilhelm Warta,et al.  Realistic evaluation of power losses in solar cells by using thermographic methods , 2004 .

[9]  C. Buerhop-Lutz,et al.  Organic solar cells characterized by dark lock-in thermography , 2010 .

[10]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[11]  Christoph J. Brabec,et al.  Physics of organic bulk heterojunction devices for photovoltaic applications , 2006 .

[12]  Otwin Breitenstein,et al.  Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography , 2001 .

[13]  Gang Li,et al.  25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research , 2013, Advanced materials.

[14]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[15]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[16]  U. Hoyer,et al.  Concept for a Real AM1.5 Simulator Based on LED-Technology and Survey on Different Types of Solar Simulators , 2009 .

[17]  Christoph J. Brabec,et al.  Organic photovoltaics for low light applications , 2011 .

[18]  Otwin Breitenstein,et al.  Quantitative evaluation of shunts in solar cells by lock‐in thermography , 2003 .

[19]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[20]  Frederik C. Krebs,et al.  Technological status of organic photovoltaics (OPV) , 2013 .