A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry

We present a new digital elevation model (DEM) of the Austfonna ice cap in the Svalbard Archipelago, Norwegian Arctic. Previous DEMs derived from synthetic aperture radar (SAR) and optical shape-from-shading have been tied to airborne radio echo-sounding surface profiles from 1983 which contain an elevation-dependent bias of up to several tens of metres compared with recent elevation data. The new and freely available DEM is constructed purely from spaceborne remote sensing data using differential SAR interferometry (DInSAR) in combination with ICESat laser altimetry. Interferograms were generated from pairs of SAR scenes from the one-day repeat tandem phase of the European Remote Sensing Satellites 1/2 (ERS-1/2) in 1996. ICESat elevations from winter 2006–08 were used as ground control points to refine the interferometric baseline. The resulting DEM is validated against the same ground control points and independent surface elevation profiles from Global Navigation Satellite Systems (GNSS) and airborne laser altimetry, yielding root mean square (RMS) errors of about 10 m in all cases. This quality is sufficient for most glaciological applications, and the new DEM will be a baseline data set for ongoing and future research at Austfonna. The technique of combining satellite DInSAR with high-resolution satellite altimetry for DEM generation might also be a good solution in other glacier regions with similar characteristics, especially when data from TanDEM-X and CryoSat-2 become available.

[1]  A. Shepherd,et al.  InSAR observations of ice elevation and velocity fluctuations at the Flade Isblink ice cap, eastern North Greenland , 2010 .

[2]  Ronald Kwok,et al.  Ice sheet motion and topography from radar interferometry , 1996, IEEE Trans. Geosci. Remote. Sens..

[3]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[4]  Pavel Ditmar,et al.  Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints , 2008 .

[5]  J. Hagen,et al.  Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard , 2008 .

[6]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[8]  Zhong Lu,et al.  Digital elevation model of King Edward VII Peninsula, West Antarctica, from SAR interferometry and ICESat laser altimetry , 2005, IEEE Geoscience and Remote Sensing Letters.

[9]  Julian A. Dowdeswell,et al.  Drainage-Basin Characteristics of Nordaustlandet Ice Caps, Svalbard , 1986, Journal of Glaciology.

[10]  T. Dunse Glacier dynamics and subsurface classification of Austfonna, Svalbard: : Inferences from observations and modelling , 2011 .

[11]  W. G. Rees,et al.  Construction of a High-Resolution DEM of an Arctic Ice Cap Using Shape-from-Shading , 1999 .

[12]  W. Krabill,et al.  Anomalous recent growth of part of a large Arctic ice cap: Austfonna, Svalbard , 2004 .

[13]  J. Hagen,et al.  Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard , 2011, Journal of Glaciology.

[14]  W. Krabill,et al.  Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice , 2001, Geophysical Research Letters.

[15]  Kristian Keller,et al.  Airborne lidar measurements for Cryosat validation , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[16]  Hiroyuki Fujisada,et al.  ASTER DEM performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  J. Hagen,et al.  A mean net accumulation pattern derived from radioactive layers and radar soundings on Austfonna, Nordaustlandet, Svalbard , 2001, Journal of Glaciology.

[18]  Anne-Marie Nuttall,et al.  Velocity structure, flow instability and mass flux on a large Arctic ice cap from satellite radar interferometry , 1999 .

[19]  S. Madsen,et al.  Topography and penetration of the Greenland Ice Sheet measured with Airborne SAR Interferometry , 2001 .

[20]  J. Hagen,et al.  Surging and calving glaciers in Eastern Svalbard , 1991 .

[21]  Christine Wesche,et al.  A Spatially Adjusted Elevation Model in Dronning Maud Land, Antarctica, Based on Differential SAR Interferometry , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[23]  Jon Ove Hagen,et al.  Kinematic GPS survey of geometry changes on Svalbard glaciers , 1997 .

[24]  H. Jay Zwally,et al.  Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Helmut Rott,et al.  Advances in interferometric synthetic aperture radar (InSAR) in earth system science , 2009 .

[26]  B. Devereux,et al.  Evaluating the potential of high‐resolution airborne LiDAR data in glaciology , 2006 .

[27]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[28]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[29]  Urs Wegmüller,et al.  Gamma SAR processor and interferometry software , 1997 .

[30]  T. Murray,et al.  Positive mass balance during the late 20th century on Austfonna, Svalbard, revealed using satellite radar interferometry , 2007, Annals of Glaciology.

[31]  K. Müller,et al.  Microwave penetration in polar snow and ice: Implications for GPR and SAR , 2011 .

[32]  Ron Kwok,et al.  Measurement of ice-sheet topography using satellite-radar interferometry , 1996 .

[33]  Jon Ove Hagen,et al.  Glacier geometry and elevation changes on Svalbard (1936–90): a baseline dataset , 2007, Annals of Glaciology.

[34]  Beryl Graham,et al.  Digital Media , 2003 .

[35]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[36]  Jon Ove Hagen,et al.  Glacier atlas of Svalbard and Jan Mayen , 1993 .

[37]  J. Dowdeswell,et al.  Digital Mapping of the Nordaustlandet Ice Caps from Airborne Geophysical Investigations , 1986, Annals of Glaciology.

[38]  L. Phalippou,et al.  CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields ☆ , 2006 .

[39]  Adrian A. Borsa,et al.  Assessment of ICESat performance at the salar de Uyuni, Bolivia , 2005 .

[40]  R. Hock A distributed temperature-index ice- and snowmelt model including potential direct solar radiation , 1999, Journal of Glaciology.

[41]  Andreas Kääb,et al.  Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[42]  C. Werner,et al.  Estimation of Arctic glacier motion with satellite L-band SAR data , 2008 .

[43]  G. Moholdt Elevation change and mass balance of Svalbard glaciers from geodetic data , 2010 .

[44]  Xiaoli Sun,et al.  ICESat measurement of Greenland ice sheet surface slope and roughness , 2005, Annals of Glaciology.

[45]  Andrea Taurisano,et al.  Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard , 2007, Annals of Glaciology.

[46]  Marc Bernard,et al.  SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009) , 2008 .

[47]  P. Visser,et al.  Precise orbit determination and gravity field improvement for the ERS satellites , 1998 .

[48]  D. Wingham,et al.  Topography and dynamics of Austfonna, Nordaustlandet, Svalbard, from SAR interferometry , 1997, Annals of Glaciology.

[49]  Jon Ove Hagen,et al.  Geometric changes and mass balance of the Austfonna ice cap, Svalbard , 2009 .

[50]  James D. Spinhirne,et al.  GLAS/ICESat L1B Global Elevation Data , 2003 .