Optical and microstructural properties of ZnO/TiO2 nanolaminates prepared by atomic layer deposition

ZnO/TiO2 nanolaminates were grown on Si (100) and quartz substrates by atomic layer deposition at 200°C using diethylzinc, titanium isopropoxide, and deionized water as precursors. All prepared multilayers are nominally 50 nm thick with a varying number of alternating TiO2 and ZnO layers. Sample thickness and ellipsometric spectra were measured using a spectroscopic ellipsometer, and the parameters determined by computer simulation matched with the experimental results well. The effect of nanolaminate structure on the optical transmittance is investigated using an ultraviolet–visible-near-infrared spectrometer. The data from X-ray diffraction spectra suggest that layer growth appears to be substrate sensitive and film thickness also has an influence on the crystallization of films. High-resolution transmission electron microscopy images show clear lattice spacing of ZnO in nanolaminates, indicating that ZnO layers are polycrystalline with preferred (002) orientation while TiO2 layers are amorphous.

[1]  G. Marcì,et al.  Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 1. Surface and Bulk Characterization , 2001 .

[2]  K. Choy,et al.  Enhancement of crystallinity and optical properties of bilayer TiO2/ZnO thin films prepared by atomic layer deposition. , 2011, Journal of nanoscience and nanotechnology.

[3]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[4]  Peter Francis Carcia,et al.  High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition , 2006 .

[5]  A. Kabashin,et al.  Synthesis and Photonics of Nanoscale Materials VIII , 2011 .

[6]  R. Mane,et al.  Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[7]  H. G. Suzuki,et al.  Precipitation characteristics of Cu–15Cr–0·15Zr in situ composite , 2000 .

[8]  M. Houng,et al.  Improved optical transmittance of Al-doped ZnO thin films by use of ZnO nanorods , 2011 .

[9]  Y. Hsu,et al.  Fabrication and characterization of ZnO/TiOx nanoscale heterojunctions , 2007 .

[10]  C. Humphreys,et al.  High resolution transmission electron microscopy and three-dimensional atom probe microscopy as complementary techniques for the high spatial resolution analysis of GaN based quantum well systems , 2008 .

[11]  Sun-Ki Min,et al.  Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells , 2006 .

[12]  O. Zelaya-Ángel,et al.  Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films , 2012 .

[13]  A. Sedaghat,et al.  EFFECTS OF THIN FILM THICKNESS ON EMITTANCE, REFLECTANCE AND TRANSMITTANCE OF NANO SCALE MULTILAYERS , 2010 .

[14]  A. H. Compton The Distribution of the Electrons in Atoms , 1915, Nature.

[15]  C. Shan,et al.  Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition , 2008 .

[16]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[17]  J. Lian,et al.  Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition , 2008 .

[18]  H. Kumagai,et al.  Novel TiO2/ZnO multilayer mirrors at ‘water-window’ wavelengths fabricated by atomic layer epitaxy , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Kwang-Leong Choy,et al.  Preferential growth of ZnO thin films by the atomic layer deposition technique , 2008, Nanotechnology.

[20]  A. Anders,et al.  Preparation of high transmittance ZnO:Al film by pulsed filtered cathodic arc technology and rapid thermal annealing , 2011 .

[21]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[22]  Zhengxiao Guo,et al.  Microstructure and mechanical properties of stainless steel under Nd:YAG pulsed laser irradiation , 2008 .

[23]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[24]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[25]  Yan Li,et al.  Fabrication of ZnO nanorods and nanotubes in aqueous solutions , 2005 .

[26]  L. Wen,et al.  Doped-TiO2 Photocatalysts and Synthesis Methods to Prepare TiO2 Films , 2009 .

[27]  Masaki Murata,et al.  Atomic layer deposition of amorphous TiO2/ZnO multilayers for soft x-ray coherent optics , 2011, LASE.

[28]  D. Tsamakis,et al.  Role of Low O/sub 2/ Pressure and Growth Temperature on Electrical Transport of PLD Grown ZnO Thin Films on Si Substrates , 2005, 2005 International Semiconductor Device Research Symposium.

[29]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.