A comprehensive three-dimensional model of the cochlea

The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics.

[1]  Karl Grosh,et al.  A theoretical study of structural acoustic silencers for hydraulic systems. , 2002, The Journal of the Acoustical Society of America.

[2]  C. D. Geisler,et al.  From Sound to Synapse: Physiology of the Mammalian Ear , 1998 .

[3]  B. M. Johnstone,et al.  Basilar Membrane Vibration Examined with the M�ssbauer Technique , 1967, Science.

[4]  M A Viergever Basilar membrane motion in a spiral-shaped cochlea. , 1978, The Journal of the Acoustical Society of America.

[5]  Mark H. Holmes,et al.  A mathematical model of the dynamics of the inner ear , 1982, Journal of Fluid Mechanics.

[6]  O. F. Ranke Theory of Operation of the Cochlea: A Contribution to the Hydrodynamics of the Cochlea , 1950 .

[7]  L. Taber,et al.  Comparison of WKB calculations and experimental results for three-dimensional cochlear models. , 1979, The Journal of the Acoustical Society of America.

[8]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[9]  Thomas Gold,et al.  Hearing. II. The Physical Basis of the Action of the Cochlea , 1948, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[10]  B. P. Bogert,et al.  A Dynamical Theory of the Cochlea , 1950 .

[11]  J F Ashmore,et al.  Finite element micromechanical modeling of the cochlea in three dimensions. , 1996, The Journal of the Acoustical Society of America.

[12]  M R Schroeder,et al.  An integrable model for the basilar membrane. , 1973, The Journal of the Acoustical Society of America.

[13]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[14]  C H Loh,et al.  Multiple scale analysis of the spirally coiled cochlea. , 1983, The Journal of the Acoustical Society of America.

[15]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[16]  D. A. Berkley,et al.  Fluid mechanics of the cochlea. Part 1 , 1972, Journal of Fluid Mechanics.

[17]  Randall J. LeVeque,et al.  Solution of a two-dimensional Cochlea model with fluid viscosity , 1988 .

[18]  C. Steele,et al.  Effect of coiling in a cochlear model. , 1985, The Journal of the Acoustical Society of America.

[19]  Thomas Gold,et al.  Hearing , 1953, Trans. IRE Prof. Group Inf. Theory.

[20]  S PeskinCharles,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[21]  J B Allen,et al.  Two-dimensional cochlear fluid model: new results. , 1977, The Journal of the Acoustical Society of America.

[22]  G. Békésy,et al.  Experiments in Hearing , 1963 .

[23]  R. Held,et al.  Dissociation of the Visual Placing Response into Elicited and Guided Components , 1967, Science.

[24]  W. T. Peake,et al.  Experiments in Hearing , 1963 .

[25]  Alfred Inselberg,et al.  Mathematical Model of the Cochlea. I: Formulation and Solution , 1976 .

[26]  Jozef J. Zwislocki,et al.  Analysis of Some Auditory Characteristics. , 1963 .

[27]  Harvey Fletcher,et al.  The Dynamics of the Cochlea , 1951 .

[28]  Mario A. Ruggero,et al.  Mössbauer measurements of basilar membrane tuning curves in the chinchilla , 1984 .

[29]  K Grosh,et al.  Three-dimensional numerical modeling for global cochlear dynamics. , 2000, The Journal of the Acoustical Society of America.

[30]  C. Steele,et al.  Behavior of the basilar membrane with pure-tone excitation. , 1974, The Journal of the Acoustical Society of America.

[31]  M. Sondhi,et al.  Cochlear macromechanics: time domain solutions. , 1979, The Journal of the Acoustical Society of America.

[32]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[33]  Mark H. Holmes,et al.  Mathematical Modeling of the Hearing Process , 1982 .

[34]  R. S. Chadwick,et al.  Studies in Cochlear Mechanics , 1981 .

[35]  Richard S. Chadwick,et al.  Effects of Geometry on Fluid Loading in a Coiled Cochlea , 2000, SIAM J. Appl. Math..

[36]  P Allaire,et al.  Cochlear partition stiffness--a composite beam model. , 1974, The Journal of the Acoustical Society of America.

[37]  J. Pierce,et al.  The cochlear compromise. , 1976, The Journal of the Acoustical Society of America.

[38]  W. W. Clark,et al.  Spontaneous otoacoustic emissions in chinchilla ear canals: Correlation with histopathology and suppression by external tones , 1984, Hearing Research.

[39]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[40]  Eugene Galanter,et al.  Handbook of mathematical psychology: I. , 1963 .

[41]  B. P. Bogert,et al.  Determination of the Effects of Dissipation in the Cochlear Partition by Means of a Network Representing the Basilar Membrane , 1951 .

[42]  E de Boer,et al.  Solving cochlear mechanics problems with higher-order differential equations. , 1982, The Journal of the Acoustical Society of America.

[43]  S M Khanna,et al.  Basilar membrane tuning in the cat cochlea. , 1982, Science.

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  C S Peskin,et al.  A general method for the computer simulation of biological systems interacting with fluids. , 1995, Symposia of the Society for Experimental Biology.

[46]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[47]  W. Siebert,et al.  Ranke revisited--a simple short-wave cochlear model. , 1973, The Journal of the Acoustical Society of America.

[48]  Alfred L. Nuttall,et al.  Extracochlear electrically evoked otoacoustic emissions: a model for in vivo assessment of outer hair cell electromotility , 1995, Hearing Research.

[49]  P J Kolston,et al.  Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. P. Beyer A computational model of the cochlea using the immersed boundary method , 1992 .

[51]  E. Givelberg Modeling elastic shells immersed in fluid , 2003 .

[52]  D O Kim,et al.  A system of nonlinear differential equations modeling basilar-membrane motion. , 1973, The Journal of the Acoustical Society of America.