On the classification of all self-dual additive codes over GF(4) of length up to 12

We consider additive codes over GF(4) that are self-dual with respect to the Hermitian trace inner product. Such codes have a well-known interpretation as quantum codes and correspond to isotropic systems. It has also been shown that these codes can be represented as graphs, and that two codes are equivalent if and only if the corresponding graphs are equivalent with respect to local complementation and graph isomorphism. We use these facts to classify all codes of length up to 12, where previously only all codes of length up to 9 were known. We also classify all extremal Type II codes of length 14. Finally, we find that the smallest Type I and Type II codes with trivial automorphism group have length 9 and 12, respectively.

[1]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[2]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[3]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[4]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[5]  Jon-Lark Kim,et al.  Projections of Binary Linear Codes onto Larger Fields , 2003, SIAM J. Discret. Math..

[6]  N. J. A. Sloane,et al.  On the Classification and Enumeration of Self-Dual Codes , 1975, J. Comb. Theory, Ser. A.

[7]  Lars Eirik Danielsen On Self-Dual Quantum Codes, Graphs, and Boolean Functions , 2005, ArXiv.

[8]  Christine Bachoc,et al.  On extremal additive F 4 codes of length 10 to 18 , 2004 .

[9]  Maarten Van den Nest,et al.  Local equivalence of stabilizer states and codes , 2005 .

[10]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[11]  André Bouchet,et al.  Isotropic Systems , 1987, Eur. J. Comb..

[12]  Christine Bachoc,et al.  On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$ , 2000 .

[13]  Vladimir D. Tonchev,et al.  Error-correcting codes from graphs , 2002, Discret. Math..

[14]  Matthew G. Parker,et al.  Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I, H, N}n Transform , 2004, SETA.

[15]  Gerald Höhn,et al.  Self-dual codes over the Kleinian four group , 2000, math/0005266.

[16]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[17]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[18]  Andreas Klappenecker,et al.  Graphs, quadratic forms, and quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[19]  Jon-Lark Kim,et al.  On additive GF(4) codes , 1999, Codes and Association Schemes.

[20]  André Bouchet,et al.  Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.

[21]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.