Computing Tensor Eigenvalues via Homotopy Methods
暂无分享,去创建一个
[1] A. Wright. Finding all solutions to a system of polynomial equations , 1985 .
[2] Zhonggang Zeng,et al. Multiple zeros of nonlinear systems , 2011, Math. Comput..
[3] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[4] Liqun Qi,et al. On the largest eigenvalue of a symmetric nonnegative tensor , 2013, Numer. Linear Algebra Appl..
[5] Kung-Ching Chang,et al. Perron-Frobenius theorem for nonnegative tensors , 2008 .
[6] Qingzhi Yang,et al. Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II , 2011, SIAM J. Matrix Anal. Appl..
[7] L. Qi,et al. The geometric measure of entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative tensors , 2012, 1203.3675.
[8] Li Wang,et al. Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..
[9] Michael K. Ng,et al. Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..
[10] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[11] Luke Oeding,et al. Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..
[12] Guoyin Li,et al. The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..
[13] Tan Zhang,et al. A survey on the spectral theory of nonnegative tensors , 2013, Numer. Linear Algebra Appl..
[14] Marina Weber,et al. Using Algebraic Geometry , 2016 .
[15] Yongjun Liu,et al. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor , 2010, J. Comput. Appl. Math..
[16] Liqun Qi,et al. D-eigenvalues of diffusion kurtosis tensors , 2008 .
[17] Zhonggang Zeng,et al. NAClab: a Matlab toolbox for numerical algebraic computation , 2014, ACCA.
[18] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[19] Jiawang Nie,et al. All Real Eigenvalues of Symmetric Tensors , 2014, SIAM J. Matrix Anal. Appl..
[20] Jonathan D. Hauenstein,et al. Homotopy techniques for tensor decomposition and perfect identifiability , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).
[21] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[22] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[23] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[24] L. Qi,et al. Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..
[25] Xiaoshen Wang,et al. The BKK root count in Cn , 1996, Math. Comput..
[26] Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors , 2012, 1203.5150.
[27] KimSunyoung,et al. PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004 .
[28] Jinshan Xie,et al. On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..
[29] Tamara G. Kolda,et al. An Adaptive Shifted Power Method for Computing Generalized Tensor Eigenpairs , 2014, SIAM J. Matrix Anal. Appl..
[30] Eugene L. Allgower,et al. Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.
[31] Tsung-Lin Lee,et al. HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.
[32] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[33] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[34] Qingzhi Yang,et al. Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..
[35] Yi Xu,et al. Nonnegative Diffusion Orientation Distribution Function , 2012, Journal of Mathematical Imaging and Vision.
[36] A. Morgan. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .
[37] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[38] B. Sturmfels,et al. The number of eigenvalues of a tensor , 2010, 1004.4953.
[39] Andrew J. Sommese,et al. The numerical solution of systems of polynomials - arising in engineering and science , 2005 .
[40] Zheng-Hai Huang,et al. Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method , 2013, Numer. Linear Algebra Appl..
[41] S. Gaubert,et al. Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.
[42] Yu-Hong Dai,et al. A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors , 2015, Numer. Linear Algebra Appl..
[43] L. Qi,et al. Numerical multilinear algebra and its applications , 2007 .
[44] Jan Verschelde,et al. Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.
[45] Jonathan D. Hauenstein,et al. Numerically Solving Polynomial Systems with Bertini , 2013, Software, environments, tools.
[46] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.