Computing Tensor Eigenvalues via Homotopy Methods

We introduce the concept of mode-$k$ generalized eigenvalues and eigenvectors of a tensor and prove some properties of such eigenpairs. In particular, we derive an upper bound for the number of equivalence classes of generalized tensor eigenpairs using mixed volume. Based on this bound and the structures of tensor eigenvalue problems, we propose two homotopy continuation type algorithms to solve tensor eigenproblems. With proper implementation, these methods can find all equivalence classes of isolated generalized eigenpairs and some generalized eigenpairs contained in the positive dimensional components (if there are any). We also introduce an algorithm that combines a heuristic approach and a Newton homotopy method to extract real generalized eigenpairs from the found complex generalized eigenpairs. A MATLAB software package, TenEig, has been developed to implement these methods. Numerical results are presented to illustrate the effectiveness and efficiency of TenEig for computing complex or real genera...

[1]  A. Wright Finding all solutions to a system of polynomial equations , 1985 .

[2]  Zhonggang Zeng,et al.  Multiple zeros of nonlinear systems , 2011, Math. Comput..

[3]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[4]  Liqun Qi,et al.  On the largest eigenvalue of a symmetric nonnegative tensor , 2013, Numer. Linear Algebra Appl..

[5]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[6]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II , 2011, SIAM J. Matrix Anal. Appl..

[7]  L. Qi,et al.  The geometric measure of entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative tensors , 2012, 1203.3675.

[8]  Li Wang,et al.  Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..

[9]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[10]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[11]  Luke Oeding,et al.  Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..

[12]  Guoyin Li,et al.  The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..

[13]  Tan Zhang,et al.  A survey on the spectral theory of nonnegative tensors , 2013, Numer. Linear Algebra Appl..

[14]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[15]  Yongjun Liu,et al.  An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor , 2010, J. Comput. Appl. Math..

[16]  Liqun Qi,et al.  D-eigenvalues of diffusion kurtosis tensors , 2008 .

[17]  Zhonggang Zeng,et al.  NAClab: a Matlab toolbox for numerical algebraic computation , 2014, ACCA.

[18]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[19]  Jiawang Nie,et al.  All Real Eigenvalues of Symmetric Tensors , 2014, SIAM J. Matrix Anal. Appl..

[20]  Jonathan D. Hauenstein,et al.  Homotopy techniques for tensor decomposition and perfect identifiability , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).

[21]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[22]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[23]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[24]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[25]  Xiaoshen Wang,et al.  The BKK root count in Cn , 1996, Math. Comput..

[26]  Lixing Han An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors , 2012, 1203.5150.

[27]  KimSunyoung,et al.  PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004 .

[28]  Jinshan Xie,et al.  On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..

[29]  Tamara G. Kolda,et al.  An Adaptive Shifted Power Method for Computing Generalized Tensor Eigenpairs , 2014, SIAM J. Matrix Anal. Appl..

[30]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[31]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[32]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[33]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[34]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[35]  Yi Xu,et al.  Nonnegative Diffusion Orientation Distribution Function , 2012, Journal of Mathematical Imaging and Vision.

[36]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[37]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[38]  B. Sturmfels,et al.  The number of eigenvalues of a tensor , 2010, 1004.4953.

[39]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[40]  Zheng-Hai Huang,et al.  Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method , 2013, Numer. Linear Algebra Appl..

[41]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.

[42]  Yu-Hong Dai,et al.  A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors , 2015, Numer. Linear Algebra Appl..

[43]  L. Qi,et al.  Numerical multilinear algebra and its applications , 2007 .

[44]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[45]  Jonathan D. Hauenstein,et al.  Numerically Solving Polynomial Systems with Bertini , 2013, Software, environments, tools.

[46]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.