Land-surface modelling in hydrological perspective – a review

The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed.

[1]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .

[2]  Catherine Ottlé,et al.  Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements , 1997 .

[3]  G. de Marsily,et al.  Comment on ‘Ground-water models cannot be validated’, by L.F. Konikow & J.D. Bredehoeft , 1992 .

[4]  J. Norman,et al.  Simulated canopy microclimate using estimated below-canopy soil surface transfer coefficients , 1995 .

[5]  Jens Christian Refsgaard,et al.  Modelling guidelinesterminology and guiding principles , 2004 .

[6]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[7]  S. Manabe CLIMATE AND THE OCEAN CIRCULATION1 , 1969 .

[8]  Jean-Paul Lhomme,et al.  Sensible Heat Flux-Radiometric Surface Temperature Relationship Over Sparse Vegetation: Parameterizing B-1 , 2000, Boundary-Layer Meteorology.

[9]  Roger A. Pielke,et al.  A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology , 1989 .

[10]  O. Merlin,et al.  Different approaches in estimating heat flux using dual angle observations of radiative surface temperature , 2004 .

[11]  J. Refsgaard Parameterisation, calibration and validation of distributed hydrological models , 1997 .

[12]  Peter M. Lafleur,et al.  Application of an energy combination model for evaporation from sparse canopies. , 1990 .

[13]  R. Pielke,et al.  Evaluation of vegetation effects on the generation and modification of mesoscale circulations , 1988 .

[14]  Z. Su,et al.  Application of remote sensing for hydrological modelling , 1990 .

[15]  K. G. McNaughton,et al.  Effects of spatial scale on stomatal control of transpiration , 1991 .

[16]  Jens Christian Refsgaard,et al.  Towards a Formal Approach to Calibration and Validation of Models Using Spatial Data , 2004 .

[17]  M. Ek,et al.  Impact of soil water property parameterization on atmospheric boundary layer simulation , 1996 .

[18]  Anne Verhoef,et al.  Some Practical Notes on the Parameter kB−1 for Sparse Vegetation , 1997 .

[19]  Charlotte Bay Hasager,et al.  Incorporating remote sensing data in physically based distributed agro-hydrological modelling , 2004 .

[20]  The impact of using area-averaged land surface properties —topography, vegetation condition, soil wetness—in calculations of intermediate scale (approximately 10 km2) surface-atmosphere heat and moisture fluxes , 1997 .

[21]  M. Leach,et al.  Role of vegetation in generation of mesoscale circulation , 1995 .

[22]  E. Boegh,et al.  Estimating transpiration rates in a Danish agricultural area using landsat thermal mapper data , 2000 .

[23]  William P. Kustas,et al.  Preface [to special section on Monsoon '90 Multidisciplinary Experiment] , 1994 .

[24]  Z. Chen,et al.  A regional-scale land surface parameterization based on areally-averaged hydrological conservation equations , 1998 .

[25]  T. A. Black,et al.  Micrometeorology, biophysical exchanges and NEE decomposition in a two-story boreal forest — development and test of an integrated model , 1999 .

[26]  J. Wallace,et al.  Evaporation from sparse crops‐an energy combination theory , 2007 .

[27]  M. S. Moran,et al.  Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland , 1996 .

[28]  Michael J. Savage,et al.  Soil and canopy energy balances in a west Texas vineyard , 1994 .

[29]  Dara Entekhabi,et al.  Analysis of Feedback Mechanisms in Land-Atmosphere Interaction , 1996 .

[30]  Keith Beven,et al.  Changing ideas in hydrology — The case of physically-based models , 1989 .

[31]  Eni G. Njoku,et al.  Examination of the difference between radiative and aerodynamic surface temperatures over sparsely vegetated surfaces , 1996 .

[32]  D. Baldocchi,et al.  Scaling carbon dioxide and water vapor exchange from leaf to canopy in a deciduous forest: I , 1995 .

[33]  S. Bergström,et al.  Principles and Confidence in Hydrological Modelling , 1991 .

[34]  John M. Norman,et al.  Measurement of heat and vapor transfer coefficients at the soil surface beneath a maize canopy using source plates , 1995 .

[35]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[36]  K. Kristensen,et al.  A MODEL FOR ESTIMATING ACTUAL EVAPOTRANSPIRATION FROM POTENTIAL EVAPOTRANSPIRATION , 1975 .

[37]  J. Tenhunen,et al.  Ecosystem studies, land-use change, and resource management , 1999 .

[38]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[39]  Piers J. Sellers,et al.  The first International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment - FIFE , 1992 .

[40]  Dara Entekhabi,et al.  Feedbacks in the Land-Surface and Mixed-Layer Energy Budgets , 1998 .

[41]  M. Butts,et al.  Flexible Integrated Watershed Modeling with MIKE SHE , 2005 .

[42]  Jay M. Ham,et al.  Aerodynamic and surface resistances affecting energy transport in a sparse crop , 1991 .

[43]  E. F. Bradley,et al.  Flux-Gradient Relationships in a Forest Canopy , 1985 .

[44]  B. Hurk,et al.  Implementation of near-field dispersion in a simple two-layer surface resistance model , 1995 .

[45]  C. Daamen,et al.  Two source model of surface fluxes for millet fields in Niger , 1997 .

[46]  William P. Kustas,et al.  A two‐source approach for estimating turbulent fluxes using multiple angle thermal infrared observations , 1997 .

[47]  J. C. Price The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation , 1980 .

[48]  Xi Chen,et al.  Groundwater influences on soil moisture and surface evaporation , 2004 .

[49]  B. Hurk,et al.  Comparison of land surface hydrology in regional climate simulations of the Baltic Sea catchment , 2002 .

[50]  Bruno Monteny,et al.  Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. I. An experimental analysis of the kB−1 parameter , 1997 .

[51]  W. Mauser,et al.  Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data , 1998 .

[52]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[53]  Yann Kerr,et al.  Directional effect on radiative surface temperature measurements over a semiarid grassland site , 2001 .

[54]  S. Running,et al.  Remote Sensing Requirements to Drive Ecosystem Models at the Landscape and Regional Scale , 1999 .

[55]  Keith Beven,et al.  On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration , 1997 .

[56]  Keith Beven,et al.  The limits of splitting: Hydrology , 1996 .

[57]  Murugesu Sivapalan,et al.  On the validation of a coupled water and energy balance model at small catchment scales , 1999 .

[58]  C. Willmott,et al.  Simulating the surface energy budget over the Konza Prairie with a mesoscale model , 1997 .

[59]  John D. Bredehoeft,et al.  Ground-water models cannot be validated , 1992 .

[60]  M. S. Moran,et al.  Sensible heat flux - Radiometric surface temperature relationship for eight semiarid areas , 1994 .

[61]  Dan Rosbjerg,et al.  Energy-based land-surface modelling: New opportunities in integrated hydrological modelling , 2005 .

[62]  T. Gan,et al.  Semi-distributed, physically based, hydrologic modeling of the Paddle River Basin, Alberta, using remotely sensed data , 2001 .

[63]  Bruno Monteny,et al.  Estimating sensible heat flux from radiometric temperature over sparse millet , 1994 .

[64]  C. Jacobs,et al.  The Sensitivity of Regional Transpiration to Land-Surface Characteristics: Significance of Feedback , 1992 .

[65]  Syukuro Manabe,et al.  THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH ’ S SURFACE , 1969 .

[66]  E. Boegh,et al.  A Remote Sensing Study of the NDVI–Ts Relationship and the Transpiration from Sparse Vegetation in the Sahel Based on High-Resolution Satellite Data , 1999 .

[67]  M. Raupach Canopy Transport Processes , 1988 .

[68]  Yann Kerr,et al.  Estimation of sensible heat flux over sparsely vegetated surfaces , 1997 .

[69]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[70]  H.-T. Mengelkamp,et al.  SEWAB – a parameterization of the Surface Energy and Water Balance for atmospheric and hydrologic models , 1999 .

[71]  P. Huyakorn,et al.  A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow , 2004 .

[72]  H. L. Penman Natural evaporation from open water, bare soil and grass , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[73]  Peter van der Keur,et al.  Modification of DAISY SVAT model for potential use of remotely sensed data , 2001 .

[74]  Dan Rosbjerg,et al.  Land-surface modelling in hydrological perspective , 2005 .

[75]  I. R. Cowan,et al.  Transfer processes in plant canopies in relation to stomatal characteristics. , 1987 .

[76]  Keith Beven,et al.  Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system , 2002 .

[77]  Raupach,et al.  Single layer models of evaporation from plant canopies are incorrect but useful, whereas multilayer models are correct but useless: discuss , 1988 .

[78]  J. Famiglietti,et al.  Multiscale modeling of spatially variable water and energy balance processes , 1994 .

[79]  Eva Boegh,et al.  Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance , 2002 .

[80]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[81]  L. Simmonds,et al.  Measurement of Evaporation from Bare Soil and its Estimation Using Surface Resistance , 1996 .

[82]  Keith Beven,et al.  Dalton Medal Lecture: How far can we go in distributed hydrological modelling? , 2001 .

[83]  Keith Beven,et al.  Distributed Hydrological Modelling , 1998 .

[84]  John M. Norman,et al.  Evaluation of the importance of Lagrangian canopy turbulence formulations in a soil–plant–atmosphere model , 2003 .

[85]  Evelyne Richard,et al.  An investigation of mesoscale flows induced by vegetation inhomogeneities using an evapotranspiration model calibrated against HAPEX-MOBILHY data. , 1989 .

[86]  Gert A. Schultz,et al.  Remote sensing in hydrology , 1988 .

[87]  V. Caselles,et al.  A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data , 2004 .

[88]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[89]  Robert J. Gurney,et al.  The theoretical relationship between foliage temperature and canopy resistance in sparse crops , 1990 .

[90]  W. J. Massman,et al.  A model study of kBH−1 for vegetated surfaces using ‘localized near-field’ Lagrangian theory , 1999 .

[91]  K. G. McNaughton,et al.  Stomatal Control of Transpiration: Scaling Up from Leaf to Region , 1986 .

[92]  Thomas C. Winter,et al.  Putting aquifers into atmospheric simulation models: an example from the Mill Creek Watershed, northeastern Kansas , 2002 .

[93]  H. V. Guptaf,et al.  Using a multiobjective approach to retrieve information on surface properties used in a SVAT model , 2004 .

[94]  Keith Beven,et al.  Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. , 1995 .

[95]  William P. Kustas,et al.  An intercomparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature , 1996 .

[96]  Patch scale aggregation of heterogeneous land surface cover for mesoscale meteorological models , 1997 .

[97]  E. F. Bradley,et al.  On Scalar Transport in Plant Canopies , 1987, Irrigation Science.