Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction.

The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR = 1.10, 95% CI: 1.03-1.18, P = 0.006 and HR = 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P = 7 × 10(-11) - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42% to 50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences might be sufficient to influence the clinical management of mutation carriers.

V. Pankratz | F. Couch | O. Olopade | T. Rebbeck | B. Karlan | J. Benítez | J. Hopper | E. John | A. Spurdle | D. Easton | G. Rennert | M. Greene | K. Offit | A. Antoniou | Å. Borg | S. Buys | B. Agnarsson | G. Chenevix-Trench | H. Nevanlinna | P. Devilee | U. Hamann | J. Beesley | Xiaoqing Chen | T. Kirchhoff | C. Lázaro | K. Nathanson | J. Godino | M. Blok | T. Cole | C. Isaacs | A. Lindblom | K. Aittomäki | A. Meindl | R. Schmutzler | Xianshu Wang | I. Andrulis | G. Glendon | P. Radice | P. Peterlongo | S. Manoukian | C. Asperen | A. Jakubowska | J. Lubiński | A. Toland | J. Simard | S. Neuhausen | C. Sutter | L. McGuffog | A. Godwin | J. Gross | E. Friedman | E. Imyanitov | P. Ganz | M. Tejada | A. Osorio | B. Wappenschmidt | S. Domchek | D. Stoppa-Lyonnet | N. Lindor | M. Porteous | A. Viel | M. Kriege | S. Peock | M. Cook | C. Oliver | D. Frost | O. Sinilnikova | S. Mazoyer | F. Hogervorst | C. Engel | C. Singer | D. Gschwantler-Kaulich | C. Szabo | M. Zikan | K. Claes | J. Rantala | U. Jensen | H. Ozçelik | M. Stenmark-Askmalm | S. Hodgson | H. Lynch | B. Poppe | L. Faivre | L. Sunde | P. Schwartz | G. Tomlinson | A. Gerdes | J. Boggess | L. Sucheston | F. Lalloo | S. Blank | M. Daly | D. Goldgar | H. Sobol | Maya Dubrovsky | A. Lasa | B. Kaufman | M. Thomassen | Shimrit Cohen | A. Miron | J. Weitzel | C. Lasset | P. Berthet | C. Noguès | N. Hoogerbrugge | K. Kast | B. Melin | M. Terry | B. Peissel | F. Lejbkowicz | P. Morrison | I. Schönbuchner | H. Jernström | T. Huzarski | M. Rookus | C. Aalfs | A. Pauw | G. Pichert | R. Davidson | J. Paterson | S. Healey | M. Piedmonte | T. V. Hansen | I. Blanco | M. Montagna | T. Caldés | S. Ramus | M. Caligo | J. Cook | H. Dorkins | A. Hardouin | D. Leroux | E. Rouleau | L. Venat-Bouvet | N. Arnold | H. Deissler | D. Gadzicki | D. Niederacher | S. Preisler‐Adams | R. Varon‐Mateeva | G. Rodriguez | G. Pfeiler | Y. Laitman | Y. Ding | P. Mai | M. Durán | L. Tihomirova | M. Barile | M. Hoya | K. Wakeley | V. Bonadona | H. Dreyfus | L. Walker | Helene Holland | V. Dall’olio | Lara E. Sucheston | D. Crüger | J. Basil | Don M. Conroy | D. Zaffaroni | E. Meijers-Heijboer | C. Loustalot | T. Noguchi | M. Frénay | A. Dressler | V. Devlin | A. Dutra-Clarke | S. Heidemann | R. Luijt | L. Foretova | Cinzia Casella | Yosuf A. Yassin | Anna Allavena | Roni Milgrom | M. Kennedy | Magdalena Lochmann | Radka Platte | Lars Jnson | D. Evans | E. Friedman | Ines Schönbuchner | Clare T. Oliver | Johanna Rantala | D. Evans | Margaret R. Cook

[1]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[2]  Mads Thomassen,et al.  Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. , 2009, Human molecular genetics.

[3]  A. Whittemore,et al.  A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 , 2009, Nature Genetics.

[4]  Shan Wang-Gohrke,et al.  Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study. , 2009, Human molecular genetics.

[5]  M. Thun,et al.  Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 , 2009, Nature Genetics.

[6]  W. Willett,et al.  A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) , 2009, Nature Genetics.

[7]  J. Haines,et al.  Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.

[8]  D. Eccles Identification of personal risk of breast cancer: genetics , 2008, Breast Cancer Research.

[9]  A. Sigurdsson,et al.  Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer , 2008, Nature Genetics.

[10]  Dieter Niederacher,et al.  Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. , 2008, American journal of human genetics.

[11]  Peter Kraft,et al.  Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics , 2008, PLoS genetics.

[12]  H A Risch,et al.  The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions , 2008, British Journal of Cancer.

[13]  C. Begg,et al.  Variation of breast cancer risk among BRCA1/2 carriers. , 2008, JAMA.

[14]  F. Couch,et al.  RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. , 2007, American journal of human genetics.

[15]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[16]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[17]  Georgia Chenevix-Trench,et al.  An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) , 2007, Breast Cancer Research.

[18]  J. Pritchard,et al.  Overcoming the winner's curse: estimating penetrance parameters from case-control data. , 2007, American journal of human genetics.

[19]  M. King,et al.  Familial clustering of site-specific cancer risks associated with BRCA1 and BRCA2 mutations in the Ashkenazi Jewish population. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Julian Peto,et al.  Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype , 2005, Clinical Cancer Research.

[21]  J. Chang-Claude,et al.  A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes , 2005, Genetic epidemiology.

[22]  J. Hopper,et al.  Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. , 2003, American journal of human genetics.

[23]  N. Risch Linkage strategies for genetically complex traits. I. Multilocus models. , 1990, American journal of human genetics.

[24]  Aleksandra,et al.  A Genome-Wide Association Study Identifies A New Ovarian Cancer Susceptibility Locus On 9 p 22 . 2 , 2010 .

[25]  K. Lange,et al.  Programs for pedigree analysis: Mendel, Fisher, and dGene , 1988, Genetic epidemiology.

[26]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .