Convergence of a general algorithm of asymptotically nonexpansive maps in uniformly convex hyperbolic spaces

Abstract In this paper, we establish convergence theorems for a general algorithm of an asymptotically nonexpansive map in a uniformly convex hyperbolic space. Our results generalize simultaneously the approximation results of Rhoades (1994) [18], Suantai (2005) [20] and Xu and Noor (2002) [26] on a nonlinear domain. Our results are refinements and generalizations of the corresponding ones in uniformly convex Banach spaces and CAT ( 0 ) spaces.

[1]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[2]  William A. Kirk,et al.  A concept of convergence in geodesic spaces , 2008 .

[3]  A. Khan On Modified Noor Iterations for Asymptotically Nonexpansive Mappings , 2010 .

[4]  You-Xian Tian Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings , 2005 .

[5]  L. A. Talman Fixed points for condensing multifunctions in metric spaces with convex structure , 1977 .

[6]  S. Ishikawa Fixed points by a new iteration method , 1974 .

[7]  M. Noor New approximation schemes for general variational inequalities , 2000 .

[8]  M. S. Khan REMARKS ON SOME FIXED POINT THEOREMS , 1982 .

[9]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[10]  Chao Wang,et al.  Convergence theorems for fixed points of uniformly quasi-Lipschitzian mappings in convex metric spaces , 2009 .

[11]  Chao Wang,et al.  Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces , 2009, Appl. Math. Comput..

[12]  M. Khamsi,et al.  Mann iteration process for asymptotic pointwise nonexpansive mappings in metric spaces , 2013 .

[13]  Muhammad Aslam Noor,et al.  Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces , 2002 .

[14]  W. A. Kirk Krasnoselskii's iteration process in hyperbolic space , 1982 .

[15]  Ulrich Kohlenbach Some Logical Metatheorems with Applications in Functional Analysis , 2003 .

[16]  William A. Kirk,et al.  A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 1972 .

[17]  Hafiz Fukhar-ud-din,et al.  An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces , 2012 .

[18]  Wataru Takahashi,et al.  A convexity in metric space and nonexpansive mappings, I , 1970 .

[19]  B. Panyanak Noor Iterations for Asymptotically Nonexpansive Mappings in CAT(0) Spaces , 2010 .

[20]  B. Rhoades,et al.  Fixed Point Iterations for Certain Nonlinear Mappings , 1994 .

[21]  Suthep Suantai,et al.  Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings , 2005 .

[22]  Byung-Soo Lee Strong convergence theorems with a Noor-type iterative scheme in convex metric spaces , 2011, Comput. Math. Appl..

[23]  Hafiz Fukhar-ud-din,et al.  Strong convergence of a general iteration scheme in C A T ( 0 ) spaces , 2011 .

[24]  W. Takahashi,et al.  Fixed points of multivalued mappings in certain convex metric spaces , 1996 .

[25]  S. Dhompongsa,et al.  On -convergence theorems in CAT(0) spaces , 2008, Comput. Math. Appl..