Field weed population dynamics : a review of model approaches and applications

Mathematical modelling is a commonly used tool for studying the long-term dynamics of weed populations in agriculture. This was reflected in our review by the large number of scientific papers (134 original publications) and the continuing need to gain an overview over this fast developing field (20 previous review papers were found). In this article, we provide a more comprehensive review than earlier seen, striving to include all relevant publications. Thus, we cover models of the population dynamics of 60 weed species in 40 crops. An online, accompanying database provices an indexed bibliography. Despite the large variation in crops, weeds and geography, the models were surprisingly similar in their approach: structured around the weed life cycle, excluding environmental factors and giving little attention to validation or even documentation of model construction. In addition, their application was similar, limited mostly to strategic decision making. We hope that the overview provided by this review will inspire weed modellers and that it will serve as a basis for discussion and as a frame of reference when we proceed to advance the modelling of weed populations to a new level, developing new approaches and tackling new application domains.

[1]  J. Heesterbeek,et al.  WEED POPULATIONS AND CROP ROTATIONS: EXPLORING DYNAMICS OF A STRUCTURED PERIODIC SYSTEM , 2002 .

[2]  Claudio M. Ghersa,et al.  The fate of Datura ferox seeds in the soil as affected by cultivation, depth of burial and degree of maturity , 1988 .

[3]  J. M. van Groenendael,et al.  How useful are population dynamical models: an example from Galium aparine L.. , 1990 .

[4]  Otto Richter,et al.  Modelling spatio-temporal dynamics of herbicide resistance , 2002 .

[5]  Alvin J. Bussan,et al.  Modeling the integrated management of giant foxtail in corn–soybean , 2001, Weed Science.

[6]  Nicholas R. Jordan Simulation Analysis of Weed Population Dynamics in Ridge-Tilled fields1 , 1993 .

[7]  Jonathan Gressel,et al.  Problems in qualifying and quantifying assumptions in plant protection models: Resultant simulations can be mistaken by a factor of million ☆ , 2005 .

[8]  Nicolas Munier-Jolain,et al.  Long‐term modelling of weed control strategies: analysis of threshold‐based options for weed species with contrasted competitive abilities , 2002 .

[9]  D. T. Briese,et al.  Demography and management of the invasive plant species Hypericum perforatum. II. Construction and use of an individual‐based model to predict population dynamics and the effects of management strategies , 2003 .

[10]  D. T. Briese,et al.  Demography and management of the invasive plant species Hypericum perforatum. I. Using multi‐level mixed‐effects models for characterizing growth, survival and fecundity in a long‐term data set , 2003 .

[11]  Bruce D. Maxwell,et al.  Modeling the population dynamics and economics of velvetleaf (Abutilon theophrasti) control in a corn (Zea mays)-soybean (Glycine max) rotation , 1995 .

[12]  Andrew R. Watkinson,et al.  Modelling the Population Dynamics of an Arable Weed and Its Effects Upon Crop Yield , 1986 .

[13]  Gail G. Wilkerson,et al.  Weed management decision models: pitfalls, perceptions, and possibilities of the economic threshold approach , 2002 .

[14]  Clarence J. Swanton,et al.  A mechanistic model of purple nutsedge (Cyperus rotundus) population dynamics , 1998, Weed Science.

[15]  Scott M. Swinton,et al.  A Bioeconomic Model for Weed Management in Corn and Soybean , 1991 .

[16]  C. J. Doyle,et al.  A review of the use of models of weed control in Integrated Crop Protection , 1997 .

[17]  Philippe Debaeke Modélisation de l'évolution à long terme de la flore adventice. II: Application à trois dicotylédones annuelles en un site donné , 1988 .

[18]  Scott M. Swinton,et al.  Field evaluation of a bioeconomic model for weed management in soybean (Glycine max) , 1997, Weed Science.

[19]  John A. Silander,et al.  Oscillatory dynamics in populations of an annual weed species Abutilon theophrasti , 1989 .

[20]  Francisca López-Granados,et al.  Modelling the demography of crenate broomrape (Orobanche crenata) as affected by broad bean (Vicia faba) cropping frequency and planting date , 1997, Weed Science.

[21]  Preben Klarskov Hansen,et al.  Using CA model to obtain insight into mechanism of plant population spread in a controllable system: annual weeds as an example , 2003 .

[22]  Marta Monjardino,et al.  Multispecies resistance and integrated management: a bioeconomic model for integrated management of rigid ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum) , 2003, Weed Science.

[23]  C. Blom,et al.  The realism of models in plant demography , 1988 .

[24]  Mark Rees,et al.  Interactions between density-dependent processes population dynamics and control of an invasive plant species, Tripleurospermum perforatum (scentless chamomile) , 2001 .

[25]  F. I. Woodward,et al.  CO 2 Enrichment and Dependence of Reproduction on Density in an Annual Plant and a Simulation of its Population Dynamics , 1992 .

[26]  B. Habekotte,et al.  Cyperus esculentus L. - biology, population dynamics, and possibilities to control this neophyte. , 1988 .

[27]  Lee A. Segel,et al.  Modelling the Effectiveness of Herbicide Rotations and Mixtures as Strategies to Delay or Preclude Resistance , 1990, Weed Technology.

[28]  L. Firbank,et al.  Community composition of phytoplankton in Fujian-Guangdong coastal upwelling region in summer and related affecting factors , 1985 .

[29]  Joan Pino,et al.  Population dynamics of Rumex obtusifolius under contrasting lucerne cropping systems , 1998 .

[30]  N. Jordan,et al.  Weed Demography and Population Dynamics: Implications for Threshold Management , 1992, Weed Technology.

[31]  K. Hurle,et al.  Studies on the validation of simulated infestation with weeds. , 1990 .

[32]  J. González-Andújar,et al.  Modelling the population dynamics of Avena sterilis under dry-land cereal cropping systems , 1991 .

[33]  Roger D. Cousens,et al.  A mathematical analysis of factors affecting the rate of spread of patches of annual weeds in an arable field , 2000 .

[34]  J. Silvertown,et al.  A density-dependent model of Cirsium vulgare population dynamics using field-estimated parameter values , 1993, Oecologia.

[35]  Jensen,et al.  Simulation of herbicide use in a crop rotation with transgenic herbicide-tolerant oilseed rape. , 1999 .

[36]  B. Gerowitt,et al.  Long-term population development of Viola arvensis Murray in a crop rotation. II. Modelling population development , 2001 .

[37]  David A. Mortensen,et al.  Simulation analysis of crop rotation effects on weed seedbanks. , 1995 .

[38]  Roger D. Cousens,et al.  Can we determine the intrinsic dynamics of real plant populations , 1995 .

[39]  Nathalie Colbach,et al.  GENESYS : a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers. I. Temporal evolution of a population of rapeseed volunteers in a field , 2001 .

[40]  J. Holt,et al.  Population model of the parasitic weed Striga hermonthica (Scrophulariaceae) to investigate the potential of Smicronyx umbrinus (Coleoptera: Curculionidae) for biological control in Mali , 1993 .

[41]  Roger D. Cousens,et al.  Modelling the economics of controlling Avena fatua in winter wheat , 1986 .

[42]  Mark V. Wilson,et al.  Population Modeling Approach for Evaluating Leafy Spurge (Euphorbia esula) Development and Control , 1988, Weed Technology.

[43]  C. J. Doyle,et al.  Mathematical models in weed management , 1991 .

[44]  Robert P. Freckleton,et al.  The population dynamics of Anisantha sterilis in winter wheat: comparative demography and the role of management , 1999 .

[45]  Claudio M. Ghersa,et al.  The population ecology of Datura ferox in soybean crops. A simulation approach incorporating seed dispersal , 1987 .

[46]  Scott M. Swinton,et al.  Field Evaluation of a Bioeconomic Model for Weed Management in Corn (Zea mays) , 1996, Weed Science.

[47]  P. Gould,et al.  On robust weed population models , 1989 .

[48]  M. L. Roush,et al.  Predicting the Evolution and Dynamics of Herbicide Resistance in Weed Populations , 1990, Weed Technology.

[49]  R Moray,et al.  Bromus species in winter wheat-population dynamics and competitiveness. , 2003, Communications in agricultural and applied biological sciences.

[50]  Marta Monjardino,et al.  RIM: a bioeconomic model for integrated weed management of Lolium rigidum in Western Australia , 2004 .

[51]  Reza Ghezelbash,et al.  Evaluating biological control of yellow starthistle (Centaurea solstitialis) in California: A GIS based supply–demand demographic model , 2005 .

[52]  Mohamed Khaladi,et al.  Modeling the population dynamics of annual plants with seed bank and density dependent effects , 1995 .

[53]  K. Hurle,et al.  Modelling of the spread of herbicide resistant weeds by the linking of population genetic models with cellular automation models. , 2000 .

[54]  B. Schmid Population biology models for weeds with vegetative propagation. , 1990 .

[55]  P. Debaeke,et al.  INTEGRATING CROP MANAGEMENT AND CROP ROTATION EFFECTS INTO MODELS OF WEED POPULATION DYNAMICS : A REVIEW , 1998 .

[56]  Rj Martin,et al.  A population model for Noogoora Burr (Xanthium occidentale). , 1983 .

[57]  Jean-Marc Meynard,et al.  EVALUATION DE L’IMPACT ENVIRONNEMENTAL : GeneSys-Colza : un modèle des effets à moyen et à long terme des systèmes de culture sur les flux de gènes entre champs de colza et repousses dans un espace agricole , 2000 .

[58]  O. Richter,et al.  Inclusion of conceptual modelling in studies on the population dynamics of the genus Striga , 1991 .

[59]  Randall E. Jones,et al.  Economic Thresholds and the Case for Longer Term Approaches to Population Management of Weeds1 , 2000, Weed Technology.

[60]  KATRIONA SHEA,et al.  Models for Improving the Targeting and Implementation of Biological Control of Weeds1 , 2004 .

[61]  José Luis González-Andújar,et al.  Modelling the population dynamics of annual ryegrass (Lolium rigidum) under various weed management systems , 2004 .

[62]  Nathalie Colbach,et al.  GeneSys: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers: II. Genetic exchanges among volunteer and cropped populations in a small region , 2001 .

[63]  C. J. Doyle,et al.  A mathematical modelling approach to the study of the economics of controlling Rumex obtusifolius in grassland , 1984 .

[64]  Nathalie Colbach,et al.  GeneSys-Colza: a model for the medium-term and long-term effects of cultivation systems on the flow of genes between rape fields and new growth in a given agricultural area. , 2000 .

[65]  Geoffrey R. Squire,et al.  A model for the impact of herbicide tolerance on the performance of oilseed rape as a volunteer weed , 1997 .

[66]  Roger D. Cousens,et al.  A model of the effects of cultivation on the vertical distribution of weed seeds within the soil. , 1990 .

[67]  K. Shea,et al.  Modeling for Management of Invasive Species: Musk Thistle (Carduus nutans) in New Zealand1 , 2004 .

[68]  B. A. Auld,et al.  INVADE: Towards the simulation of plant spread , 1990 .

[69]  R. Medd,et al.  A stochastic dynamic programming framework for weed control decision making: an application to Avena fatua L. , 1991 .

[70]  C. J. Doyle,et al.  A model of the economics of controlling Alopecurus myosuroides Huds. in winter wheat , 1986 .

[71]  M. C. Saxena,et al.  Simulation of the Seed Bank Dynamics of Orobanche crenata Forsk. in some Crop Rotations Common in Northern Syria , 1996 .

[72]  John A. Silander,et al.  Field Tests of Neighborhood Population Dynamic Models of Two Annual Weed Species , 1990 .

[73]  Bruce D. Maxwell,et al.  The Influence of Weed Seed Dispersion Versus the Effect of Competition on Crop Yield , 1992, Weed Technology.

[74]  Joe N. Perry,et al.  Modeling effects of spatial patterns on the seed bank dynamics of Alopecurus myosuroides , 1999, Weed Science.

[75]  Robert L. Zimdahl,et al.  Bioeconomic Modeling to Simulate Weed Control Strategies for Continuous Corn (Zea mays) , 1986, Weed Science.

[76]  S. Moss,et al.  Modelling different cultivation and herbicide strategies for their effect on herbicide resistance in Alopecurus myosuroides , 2000 .

[77]  M. Van Oijen,et al.  Level of threshold weed density does not affect the long-term frequency of weed control , 1997 .

[78]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[79]  Katriona Shea,et al.  ESTIMATING BIOCONTROL AGENT IMPACT WITH MATRIX MODELS: CARDUUS NUTANS IN NEW ZEALAND , 1998 .

[80]  Bruce D. Maxwell,et al.  Velvetleaf (Abutilon theophrasti) Recruitment, Survival, Seed Production, and Interference in Soybean (Glycine max) , 1995, Weed Science.

[81]  Francesco Vidotto,et al.  A mathematical model to predict the population dynamics of Oryza sativa var. sylvatica , 2001 .

[82]  Alvin J. Bussan,et al.  Modeling the integrated management of velvetleaf in a corn–soybean rotation , 2001, Weed Science.

[83]  A. Grundy Predicting weed emergence: a review of approaches and future challenges , 2003 .

[84]  Philippe Debaeke,et al.  Modélisation de l'évolution à long terme de la flore adventice. I: Construction d'un modèle descriptif de l'évolution quantitative du stock de semences de l'horizon travaillé , 1988 .

[85]  H. Kroon,et al.  ELASTICITIES: A REVIEW OF METHODS AND MODEL LIMITATIONS , 2000 .

[86]  J. L. Gonzalez-Andujar,et al.  Modeling the effect of farmers' decisions on the population dynamics of winter wild oat in an agricultural landscape , 2001, Weed Science.

[87]  J. M. van Groenendael,et al.  Patchy distribution of weeds and some implications for modelling population dynamics: a short literature review , 1988 .

[88]  P. D. Putwain,et al.  The Prediction of Weed Infestations: Concepts and Approaches , 1984 .

[89]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[90]  Andrew P. Robinson,et al.  Model validation using equivalence tests , 2004 .

[91]  R. Freckleton,et al.  Predicting the determinants of weed abundance: a model for the population dynamics of Chenopodium album in sugar beet , 2008 .

[92]  David J. Pannell,et al.  Sensitivity Analysis of Normative Economic Models: Theoretical Framework and Practical Strategies , 1997 .

[93]  José Luis González-Andújar,et al.  Models for the herbicidal control of the seed bank of Avena sterilis : the effects of spatial and temporal heterogeneity and of dispersal , 1995 .

[94]  R. Cousens A simple model relating yield loss to weed density , 1985 .