RADIO–FAR-INFRARED CORRELATION IN “BLUE CLOUD” GALAXIES WITH 0 < z < 1.2

We study the radio–far-infrared (FIR) correlation in “blue cloud” galaxies chosen from the PRism MUltiobject Survey up to redshift (z) of 1.2 in the XMM-LSS field. We use rest-frame emission at 1.4 GHz in the radio and both monochromatic (at 70 μm) and bolometric (between 8 and 1000 μm) emission in the FIR. To probe the nature of the correlation up to z ∼1.2, where direct detection of blue star-forming galaxies is impossible with current technology, we employ the technique of image stacking at 0.325 and 1.4 GHz in the radio and in six infrared bands, 24, 70, 160, 250, 350, and 500 μm. For comparison, we also study the correlation for more luminous galaxies that are directly detected. The stacking analysis allows us to probe the radio–FIR correlation for galaxies that are up to two orders of magnitude fainter than the ones detected directly. The k correction in the infrared wavebands is obtained by fitting the observed spectral energy distribution with a composite mid-IR power law and a single temperature graybody model. We find that the radio luminosity at 1.4 GHz ( L 1.4 GHz ?> ) is strongly correlated with monochromatic FIR luminosity at 70 μm ( L 70 &mgr; m ?> ) having slope 1.09 ± 0.05 and with bolometric luminosity ( L TIR ?> ) having slope 1.11 ± 0.04. The quantity q TIR ( = log 10 [ L TIR / ( 3.75 × 10 12 L 1.4 GHz ) ] ) ?> is observed to decrease with redshift as q TIR ∝ ( 1 + z ) − 0.16 ± 0.03 ?> probably caused due to the nonlinear slope of the radio–FIR correlation. Within the uncertainties of our measurement and the limitations of our flux-limited and color-selected sample, we do not find any evolution of the radio–FIR correlation with redshift.

[1]  T. Goto,et al.  ULTRALUMINOUS INFRARED GALAXIES IN THE AKARI ALL-SKY SURVEY , 2014, 1410.6435.

[2]  S. Maddox,et al.  The temperature dependence of the far-infrared–radio correlation in the Herschel-ATLAS , 2014, 1409.2499.

[3]  A. Hopkins,et al.  Galaxy And Mass Assembly: Deconstructing Bimodality - I. Red ones and blue ones , 2014, 1408.5984.

[4]  A. Cimatti,et al.  The evolution of the dust temperatures of galaxies in the SFR–M∗ plane up to z ~ 2 , 2013, 1311.2956.

[5]  A. D. Bray,et al.  PRIMUS: GALAXY CLUSTERING AS A FUNCTION OF LUMINOSITY AND COLOR AT 0.2 < z < 1 , 2013, 1310.1093.

[6]  R. Beck,et al.  A new interpretation of the far-infrared – radio correlation and the expected breakdown at high redshift , 2013, 1306.6652.

[7]  S. Bamford,et al.  The different star formation histories of blue and red spiral and elliptical galaxies , 2013, 1303.3551.

[8]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[9]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING , 2013, 1303.2672.

[10]  P. Rosati,et al.  THE VERY LARGE ARRAY 1.4 GHz SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: SECOND DATA RELEASE , 2013, 1301.7004.

[11]  D. Elbaz,et al.  GOODS-Herschel: radio-excess signature of hidden AGN activity in distant star-forming galaxies , 2012, 1210.2521.

[12]  A. Basu,et al.  LOW-FREQUENCY RADIO–FIR CORRELATION IN NORMAL GALAXIES AT ∼1 kpc SCALES , 2012, 1207.2555.

[13]  A. Shukurov,et al.  The supernova-regulated ISM - II. The mean magnetic field , 2012, 1206.6784.

[14]  C. Casey Far-infrared spectral energy distribution fitting for galaxies near and far , 2012, 1206.1595.

[15]  G. R. Sarson,et al.  The supernova-regulated ISM – I. The multiphase structure , 2012, 1204.3567.

[16]  J. Chengalur,et al.  The radio - far infrared correlation in the faintest star forming dwarf galaxies , 2012, 1204.3305.

[17]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[18]  D. L. Clements,et al.  HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background , 2012, 1203.1925.

[19]  A. Cimatti,et al.  A Herschel view of the far-infrared properties of submillimetre galaxies , 2012, 1202.0761.

[20]  I. P'erez-Fournon,et al.  HerMES: point source catalogues from deep Herschel-SPIRE observations★ , 2011, Monthly Notices of the Royal Astronomical Society.

[21]  A. Basu,et al.  GMRT 333‐MHz observations of six nearby normal galaxies , 2011, 1109.0369.

[22]  Mark Dickinson,et al.  No evidence for evolution in the Far-Infrared-Radio correlation out to z ~ 2 in the ECDFS , 2011, Proceedings of the International Astronomical Union.

[23]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[24]  Robert H. Becker,et al.  HIGH-RESOLUTION VERY LARGE ARRAY IMAGING OF SLOAN DIGITAL SKY SURVEY STRIPE 82 AT 1.4 GHz , 2011 .

[25]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[26]  G. Richards,et al.  HIGH-RESOLUTION VERY LARGE ARRAY IMAGING OF SLOAN DIGITAL SKY SURVEY STRIPE 82 AT 1.4 GHz , 2011, 1103.5749.

[27]  M. Dickinson,et al.  NO EVIDENCE FOR EVOLUTION IN THE FAR-INFRARED–RADIO CORRELATION OUT TO z ∼ 2 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2011, 1102.3249.

[28]  R. Beck,et al.  Magnetic fields in Local Group dwarf irregulars , 2011, 1101.4647.

[29]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[30]  E. Murphy,et al.  THE LOCAL RADIO–IR RELATION IN M51 , 2010, 1012.0212.

[31]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.

[32]  M. Blanton,et al.  PRIMUS: OBSCURED STAR FORMATION ON THE RED SEQUENCE , 2010, 1011.4308.

[33]  C. Carilli,et al.  THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG , 2010, 1005.1641.

[34]  A. Cimatti,et al.  The far-infrared/radio correlation as probed by Herschel , 2010, 1005.1072.

[35]  M. Dickinson,et al.  VERY LARGE ARRAY 1.4 GHz OBSERVATIONS OF THE GOODS-NORTH FIELD: DATA REDUCTION AND ANALYSIS , 2010, 1004.1671.

[36]  N. Bavouzet,et al.  Submillimeter number counts at 250 μm, 350 μm and 500 μm in BLAST data , 2010, 1003.0833.

[37]  G. Zamorani,et al.  THE VLA-COSMOS PERSPECTIVE ON THE INFRARED–RADIO RELATION. I. NEW CONSTRAINTS ON SELECTION BIASES AND THE NON-EVOLUTION OF THE INFRARED/RADIO PROPERTIES OF STAR-FORMING AND ACTIVE GALACTIC NUCLEUS GALAXIES AT INTERMEDIATE AND HIGH REDSHIFT , 2010, 1001.1354.

[38]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[39]  J. Dunlop,et al.  BLAST: the far-infrared/radio correlation in distant galaxies , 2009, 0910.1091.

[40]  Eric J. Murphy,et al.  THE FAR-INFRARED–RADIO CORRELATION AT HIGH REDSHIFTS: PHYSICAL CONSIDERATIONS AND PROSPECTS FOR THE SQUARE KILOMETER ARRAY , 2009, 0910.0011.

[41]  Todd A. Thompson,et al.  THE PHYSICS OF THE FAR-INFRARED–RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS , 2009, 0907.4161.

[42]  D. Breitschwerdt,et al.  What Physical Processes Drive the Interstellar Medium in the Local Bubble? , 2009 .

[43]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[44]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[45]  Laboratoire d'Astrophysique de Marseille,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.

[46]  P. P. van der Werf,et al.  The Color-Magnitude Distribution of Field Galaxies to z~3: The Evolution and Modeling of the Blue Sequence , 2007, 0705.3325.

[47]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[48]  Tadafumi Takata,et al.  Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population , 2006, astro-ph/0609529.

[49]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[50]  R. Becker,et al.  Signals from the Noise: Image Stacking for Quasars in the FIRST Survey , 2006, astro-ph/0607335.

[51]  I. Smail,et al.  SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies , 2006, The Astrophysical Journal.

[52]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[53]  L. Staveley-Smith,et al.  A multiresolution analysis of the radio-FIR correlation in the Large Magellanic Cloud , 2006, astro-ph/0602380.

[54]  D. Breitschwerdt,et al.  Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: Effect of the magnetic field , 2005, astro-ph/0502327.

[55]  G. Wilson,et al.  The Far- and Mid-Infrared/Radio Correlations in the Spitzer Extragalactic First Look Survey , 2004, astro-ph/0406030.

[56]  M. Dopita,et al.  The Radio–FIR Correlation: Is MHD Turbulence the Cause? , 2003, Publications of the Astronomical Society of Australia.

[57]  B. Garilli,et al.  The VLA-VIRMOS Deep Field I. Radio observations probing the microJy source population , 2003, astro-ph/0303364.

[58]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[59]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[60]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[61]  M. Garrett,et al.  The FIR/Radio correlation of high redshift galaxies in the region of the HDF-N , 2001, astro-ph/0108313.

[62]  D. Balsara,et al.  The Distribution of Pressures in a Supernova-driven Interstellar Medium. I. Magnetized Medium , 2001, astro-ph/0106509.

[63]  S. Serjeant,et al.  SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.

[64]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[65]  E. Vishniac,et al.  The Anisotropy of Magnetohydrodynamic Alfvénic Turbulence , 2000 .

[66]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[67]  D. Sanders,et al.  The IRAS 1 Jy Survey of Ultraluminous Infrared Galaxies. I. The Sample and Luminosity Function , 1998, astro-ph/9806148.

[68]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[69]  G. Helou,et al.  A physical model of the infrared-to-radio correlation in galaxies , 1993 .

[70]  N. Duric,et al.  New results on the radio-far-infrared relation for galaxies , 1992 .

[71]  T. Thuan,et al.  Compact starbursts in ultraluminous infrared galaxies , 1991 .

[72]  G. J. Babu,et al.  Linear regression in astronomy. II , 1990 .

[73]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[74]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[75]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .