Non-covalent functionalization of carbon nanotubes with glycolipids: glyconanomaterials with specific lectin-affinity

A strategy based on the utilization of neutral pyrene functionalized neoglycolipids I that interact with a CNT’s surface giving rise to biocompatible nanomaterials which are able to engage specific ligand-lectin interactions similar to glycoconjugates on the cell membrane is reported.

[1]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[2]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[3]  Andrew S. Mount,et al.  Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer , 2006 .

[4]  Hongjie Dai,et al.  Supramolecular Chemistry on Water- Soluble Carbon Nanotubes for Drug Loading and Delivery , 2007 .

[5]  T. Ebbesen,et al.  Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. , 1999, Angewandte Chemie.

[6]  M. Prato,et al.  Translocation of bioactive peptides across cell membranes by carbon nanotubes. , 2004, Chemical communications.

[7]  M. Prato,et al.  Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes. , 2008, Journal of the American Chemical Society.

[8]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Zhuang Liu,et al.  Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. , 2005, Journal of the American Chemical Society.

[10]  M. Prato,et al.  Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  L. Lasky Selectin-carbohydrate interactions and the initiation of the inflammatory response. , 1995, Annual review of biochemistry.

[12]  Sanjiv S Gambhir,et al.  A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. , 2008, Nature nanotechnology.

[13]  J. James,et al.  A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks , 2006, Critical reviews in toxicology.

[14]  Carolyn R Bertozzi,et al.  Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. , 2008, Angewandte Chemie.

[15]  M. Prato,et al.  Functionalized carbon nanotubes for plasmid DNA gene delivery. , 2004, Angewandte Chemie.

[16]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[17]  Carolyn R Bertozzi,et al.  Interfacing carbon nanotubes with living cells. , 2006, Journal of the American Chemical Society.

[18]  M Vijayan,et al.  Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. , 1996, Journal of molecular biology.

[19]  Weibo Cai,et al.  Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy , 2008, Proceedings of the National Academy of Sciences.

[20]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[21]  Raymond A. Dwek,et al.  Glycobiology: Toward Understanding the Function of Sugars. , 1996, Chemical reviews.

[22]  L. Kiessling,et al.  Strength in numbers: non-natural polyvalent carbohydrate derivatives. , 1996, Chemistry & biology.

[23]  Huajian Gao,et al.  Effect of single wall carbon nanotubes on human HEK293 cells. , 2005, Toxicology letters.

[24]  Ya‐Ping Sun,et al.  Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. , 2006, Journal of the American Chemical Society.

[25]  R. Jerome,et al.  Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. , 2003, Chemical communications.

[26]  Shuming Nie,et al.  Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery , 2006, Molecular Cancer Therapeutics.

[27]  Matteo Pasquali,et al.  Carbon nanotube‐enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field , 2007, Cancer.

[28]  Hiroto Murakami,et al.  Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion , 2002 .

[29]  Yuan-chuan Lee,et al.  Carbohydrate-Protein Interactions: Basis of Glycobiology , 1995 .

[30]  T. Ebbesen,et al.  Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes , 2003, Science.

[31]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[32]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[33]  J. Tour,et al.  Covalent chemistry of single-wall carbon nanotubes , 2002 .

[34]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[35]  Carolyn R. Bertozzi,et al.  Chemical Glycobiology , 2001, Science.

[36]  H. Dai,et al.  Carbon nanotubes as intracellular protein transporters: generality and biological functionality. , 2005, Journal of the American Chemical Society.