Molecular and morphological data reveal cryptic taxonomic diversity in the terrestrial slug complex Arion subfuscus/fuscus (Mollusca, Pulmonata, Arionidae) in continental north‐west Europe

The importance and abundance of cryptic species among invertebrate taxa is well documented. Nowadays, taxonomic, phylogenetic and conservation biological studies frequently use molecular markers to delineate cryptic taxa. Such studies, however, often face the problem of the differential resolution of the molecular markers and techniques involved. This issue is explored in the present study of cryptic taxa within the terrestrial slug complex Arion subfuscus/fuscus in continental north-west Europe. To this end, morphological, allozyme and mitochondrial 16S rDNA sequence data have been jointly evaluated. Using allozyme data and gonad type, two distinct groups were consistently delineated, even under sympatric conditions. The 16S rDNA data strongly supported both those groups and even suggested the presence of three distinct taxa within one of them. However, in view of: (1) the allopatric distribution of three OTUs, (2) the lack of allozyme or morphological differentiation, and (3) the extremely high degree of intraspecific mtDNA variation reported in pulmonate gastropods, they are, for the time being, not regarded as valid species under the biological species concept. By means of 16S rDNA and allozyme data, the position of type and topotype material of A. subfuscus s.s. and A. fuscus relative to the newly defined OTUs was determined, thus clarifying the nomenclature of this species complex. Additionally, gonad type proved to be a useful character for distinguishing the two species in north-west Europe.

[1]  W. H. Dall,et al.  Histoire naturelle des mollusques terrestres et fluviatiles de la France , 1805 .

[2]  A. E. D. D. Férussac,et al.  Histoire naturelle générale et particulière des mollusques terrestres et fluviatiles , 1820 .

[3]  O. Lūsis Pigment of the Hermaphrodite Gland of Arion ater rufus L. , 1962, Nature.

[4]  O. Lüsis CHANGES INDUCED IN THE REPRODUCTIVE SYSTEM OF ARION ATER RUFUS L. BY VARYING ENVIRONMENTAL CONDITIONS , 1966 .

[5]  Wiktor Andrzej Daszewski Die Nacktschnecken Polens : Arionidae, Milacidae, Limacidae (Gastropoda, Stylommatophora) , 1973 .

[6]  H. Harris,et al.  Handbook of enzyme electrophoresis in human genetics , 1976 .

[7]  M. Nei,et al.  Estimation of average heterozygosity and genetic distance from a small number of individuals. , 1978, Genetics.

[8]  G. McCracken,et al.  Self-fertilization and monogenic strains in natural populations of terrestrial slugs. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. B. Selander,et al.  BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics , 1981 .

[10]  H. Ochman,et al.  Genetic population structure and breeding systems in arionid slugs (Mollusca: Pulmonata) , 1982 .

[11]  A. Wiktor The slugs of Bulgaria (Arionidae, Milacidae, Agriolimacidae - Gastropoda, Stylommatophora) , 1983 .

[12]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[13]  B. Eversham,et al.  A field key to the slugs of the British Isles. Mollusca: Pulmonata, families: Arionidae, Limacidae, Milacidae, Testacellidae , 1983 .

[14]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[15]  H. Ochman,et al.  Genetic diversity and breeding systems in terrestrial slugs of the families Limacidae and Arionidae , 1984 .

[16]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[17]  A. D. Winter Little known and new South-west European slugs (Pulmonata: Agriolimacidae, Arionidae) , 1986 .

[18]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[19]  T. Backeljau,et al.  Comparative electrophoretic analyses of three European Carinarion species (Mollusca, Pulmonata, Arionidae) , 1987 .

[20]  T. Sekiya,et al.  Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[21]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[22]  S. Palumbi,et al.  Large mitochondrial DNA differences between morphologically similar Penaeid shrimp. , 1991, Molecular marine biology and biotechnology.

[23]  F. Rohlf,et al.  NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, version 2.1: Owner manual , 1992 .

[24]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[25]  N. Knowlton Sibling species in the sea , 1993 .

[26]  D. Norris,et al.  Molecular taxonomy using single‐strand conformation polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes , 1994, Insect molecular biology.

[27]  T. Backeljau,et al.  Genital and allozyme similarity between Arion urbiae and A. anguloi (Mollusca: Pulmonata) , 1994 .

[28]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[29]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[30]  J. Iglesias,et al.  THE ARION SUBFUSCUS COMPLEX IN THE EASTERN PART OF THE IBERIAN PENINSULA, WITH REDESCRIPTION OF ARION SUBFUSCUS (DRAPARNAUD 1805) (GASTROPODA: PULMONA TA: ARIONIDAE) , 1995 .

[31]  T. Backeljau,et al.  Protein electrophoresis in Arionid taxonomy , 1996 .

[32]  A. Guiller,et al.  Extreme divergence of mitochondrial DNA within species of pulmonate land snails , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  T. Backeljau,et al.  ALLOZYME DIVERSITY IN SLUGS OF THE CARINARION COMPLEX (MOLLUSCA, PULMONATA) , 1997 .

[34]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[35]  P. Taberlet,et al.  Comparative phylogeography and postglacial colonization routes in Europe , 1998, Molecular ecology.

[36]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[37]  G. C. Johns,et al.  Speciation durations and Pleistocene effects on vertebrate phylogeography , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  V. Douris,et al.  MITOCHONDRIAL PHYLOGEOGRAPHY OF THE LAND SNAIL ALBINARIA IN CRETE: LONG‐TERM GEOLOGICAL AND SHORT‐TERM VICARIANCE EFFECTS , 1998, Evolution; international journal of organic evolution.

[39]  T. Backeljau,et al.  Food‐induced esterase electromorphs in Carinarion spp. and their effects on taxonomic data analysis (Gastropoda, Pulmonata, Arionidae) , 1999, Electrophoresis.

[40]  A. Davison An East–West distribution of divergent mitochondrial haplotypes in British populations of the land snail, Cepaea nemoralis (Pulmonata) , 2000 .

[41]  A. Davison,et al.  History or current selection? A molecular analysis of ‘area effects’ in the land snail Cepaea nemoralis , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  C Wood,et al.  Pea chloroplast carnitine acetyltransferase , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[43]  K. Crandall,et al.  Considering evolutionary processes in conservation biology. , 2000, Trends in ecology & evolution.

[44]  T. Backeljau,et al.  Is there a geographical pattern in the breeding system of a complex of hermaphroditic slugs (Mollusca: Gastropoda: Carinarion)? , 2000, Heredity.

[45]  A. Wiktor Agriolimacidae (Gastropoda: Pulmonata) - a systematic monograph , 2000 .

[46]  Ari Löytynoja,et al.  SOAP, cleaning multiple alignments from unstable blocks , 2001, Bioinform..

[47]  S. Chiba,et al.  High within‐population mitochondrial DNA variation due to microvicariance and population mixing in the land snail Euhadra quaesita (Pulmonata: Bradybaenidae) , 2001, Molecular ecology.

[48]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[49]  SPECIATION IN ANCIENT CRYPTIC SPECIES COMPLEXES: EVIDENCE FROM THE MOLECULAR PHYLOGENY OF BRACHIONUS PLICATILIS (ROTIFERA) , 2002, Evolution; international journal of organic evolution.

[50]  J. Ferguson On the use of genetic divergence for identifying species , 2002 .

[51]  D. Glen,et al.  Agriolimacidae, Arionidae and Milacidae as pests in Western European cereals. , 2002 .

[52]  G. Barker,et al.  Agriolimacidae, Arionidae and Milacidae as pests in West European sunflower and maize. , 2002 .

[53]  S. Goodacre Population structure, history and gene flow in a group of closely related land snails: genetic variation in Partula from the Society Islands of the Pacific , 2002, Molecular ecology.

[54]  R. A. Byers,et al.  Agriolimacidae and Arionidae as pests in conservation tillage soybean and maize cropping in North America. , 2002 .

[55]  T. Backeljau,et al.  Congruence between starch gel and polyacrylamide gel electrophoresis in detecting allozyme variation in pulmonate land slugs , 2003, Electrophoresis.

[56]  G. Gouws,et al.  Molecular and morphometric data demonstrate the presence of cryptic lineages among freshwater crabs (Decapoda: Potamonautidae: Potamonautes) from the Drakensberg Mountains, South Africa , 2003 .

[57]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[58]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[59]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.