Real-Time Relative Positioning of Spacecraft over Long Baselines

This paper deals with the problem of real-time onboard relative positioning of low-Earth-orbit spacecraft over long baselines using the Global Positioning System. Large intersatellite separations, up to hundreds of kilometers, are of interest to multistatic and bistatic synthetic-aperture radar applications, in which highly accurate relative positioning may be required in spite of the long baseline. To compute the baseline with high accuracy, the integer nature of dual-frequency, double-difference carrier-phase ambiguities can be exploited. However, the large intersatellite separation complicates the integer-ambiguities determination task due to the presence of significant differential ionospheric delays and broadcast ephemeris errors. To overcome this problem, an original approach is proposed, combining an extended Kalman filter with an integer least-square estimator in a closed-loop scheme, capable of fast on-the-fly integer-ambiguities resolution. These integer solutions are then used to compute the re...

[1]  Oliver Montenbruck,et al.  High Accuracy Kinematic Spacecraft Relative Positioning Using Dual-Frequency GPS Carrier Phase Data , 2004 .

[2]  Sandra Verhagen,et al.  GNSS Ambiguity Resolution: When and How to Fix or not to Fix? , 2008 .

[3]  Oliver Montenbruck,et al.  Precise GRACE baseline determination using GPS , 2005 .

[4]  Michael E. Schaepman,et al.  Algorithm theoretical basis document , 2009 .

[5]  E. Glenn Lightsey,et al.  A real-time kinematic GPS sensor for spacecraft relative navigation Ein GPS Sensor zur kinematischen Relativnavigation von Raumfahrzeugen in Echtzeit , 2002 .

[6]  Alexandra Verhagen,et al.  The GNSS integer ambiguities: estimation and validation , 2005 .

[7]  Peter Teunissen,et al.  On the GPS widelane and its decorrelating property , 1997 .

[8]  Oliver Montenbruck,et al.  In-flight performance analysis of the CHAMP BlackJack GPS Receiver , 2003 .

[9]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[10]  Eberhard Gill,et al.  Tight formation flying for an along-track SAR interferometer , 2003 .

[11]  Mark L. Psiaki,et al.  Modeling, Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation , 2005 .

[12]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[13]  Simone D'Amico,et al.  Spaceborne Autonomous Relative Control System for Dual Satellite Formations , 2009 .

[14]  O. Montenbruck,et al.  Real-Time Navigation of Formation-Flying Spacecraft Using Global-Positioning-System Measurements , 2005 .

[15]  Oliver Montenbruck,et al.  Precision real-time navigation of LEO satellites using global positioning system measurements , 2008 .

[16]  E. Glenn Lightsey,et al.  Integrated Hardware Investigations of Precision Spacecraft Rendezvous Using the Global Positioning System , 2003 .

[17]  C. J. Earls,et al.  An approach for instantaneous ambiguity resolution for medium- to long-range multiple reference station networks , 2005 .

[18]  O. Montenbruck,et al.  Carrier Phase Differential GPS for LEO Formation Flying – The PRISMA and TanDEM-X Flight Experience , 2011 .

[19]  Sien-Chong Wu,et al.  Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters With GPS Bias Fixing , 2006 .

[20]  Michele Grassi,et al.  Ionospheric path delay models for spaceborne GPS receivers flying in formation with large baselines , 2011 .

[21]  Eunsung Lee,et al.  Estimation of relative satellite position using transformed differential carrier-phase GPS measurements , 2007 .

[22]  C.C.J.M. Tiberius,et al.  Geometry-free ambiguity success rates in case of partial fixing , 1999 .

[23]  Michele Grassi,et al.  GPS-based Relative Navigation of LEO formations with Varying Baselines , 2010 .

[24]  Alex Parkins,et al.  Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm , 2011 .

[25]  R. Kroes,et al.  Precise relative positioning offormation flying Spacecraft using GPS , 2006 .

[26]  F. Colone,et al.  From the expected scientific applications to the functional specifications, products and performance of the SABRINA missions , 2008, 2008 IEEE Radar Conference.

[27]  Oliver Montenbruck,et al.  Navigation and control of the TanDEM-X formation , 2008 .

[28]  Frank Bauer,et al.  Pre-Launch Testing of GPS Receivers for Geodetic Space Missions , 2000 .

[29]  Jay A. Farrell,et al.  Aided Navigation: GPS with High Rate Sensors , 2008 .

[30]  Michele Grassi,et al.  Carrier-based Differential GPS for autonomous relative navigation in LEO , 2012 .

[31]  Mark L. Psiaki,et al.  Carrier-Phase Differential Global Positioning System Navigation Filter for High-Altitude Spacecraft , 2008 .

[32]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[33]  Sandra Verhagen,et al.  GNSS carrier phase ambiguity resolution: challenges and open problems , 2009 .

[34]  Georgia Fotopoulos,et al.  InSAR Microsatellite Constellations Enabled by Formation Flying and Onboard Processing Capabilities , 2011 .

[35]  Oliver Montenbruck,et al.  GPS Based Relative Navigation for the TanDEM-X Mission - First Flight Results , 2010 .

[36]  Giancarmine Fasano,et al.  Design of interferometric and bistatic mission phases of COSMO/SkyMed constellation , 2008 .