Sensitivity Analysis of a Fire Field Model in the Case of a Large-Scale Compartment Fire Scenario

The objective of this work is to show how a sensitivity study based on a fractional factorial design can be helpful to quantify the impact of parameter variations on model predictions. These parameters have been carefully chosen due to their high variability in fire modeling and the analysis is conducted by simulating a compartment fire with a CFD model. Through a rigorous approach, it is demonstrated that this fractional design composed of eight simulations gives the same information as a standard full design of 64 runs. Physically, it is found that some turbulence and combustion parameters are significant for most the responses.

[1]  H. Wang,et al.  Numerical study of under-ventilated fire in medium-scale enclosure , 2009 .

[2]  L. Rigollet,et al.  Quantifying differences between computational results and measurements in the case of a large-scale well-confined fire scenario , 2011 .

[3]  J. Meseguer,et al.  Thermal radiation heat transfer , 2012 .

[4]  Simo Hostikka,et al.  Probabilistic simulation of fire scenarios , 2003 .

[5]  Yoshihide Tominaga,et al.  Turbulent Schmidt numbers for CFD analysis with various types of flowfield , 2007 .

[6]  Yanhu Guo,et al.  The Effect of Schmidt Number on Turbulent Scalar Mixing in a Jet-in-Crossflow , 1999 .

[7]  Wang Wei,et al.  Investigation of lifted jet flames stabilization mechanism using RANS simulations , 2011 .

[8]  Abraham M. Hasofer,et al.  Modern sensitivity analysis of the CESARE-Risk computer fire model , 2009 .

[9]  L. Rigollet,et al.  Verification and validation of a CFD model for simulations of large-scale compartment fires , 2011 .

[10]  Extending the mixture fraction concept to address under-ventilated fires , 2009 .

[11]  Tokiyoshi Yamada,et al.  An Experimental Study Of Ejected Flames And Combustion Efficiency , 2003 .

[12]  Liu Tao,et al.  Application of the elliptic conditional moment closure model to a two-dimensional nonpremixed methanol bluff-body flame , 2000 .

[13]  Archibald Tewarson,et al.  Ventilation-controlled combustion of polymers , 1993 .

[14]  Simo Hostikka,et al.  Probabilistic simulation of cable performance and water based protection in cable tunnel fires , 2011 .

[15]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[16]  John F. Widmann,et al.  Evaluation of the planck mean absorption coefficients for radiation transport through smoke , 2003 .

[17]  Vb Novozhilov,et al.  Computational fluid dynamics modeling of compartment fires , 2001 .

[18]  W. Marsden I and J , 2012 .

[19]  Archibald Tewarson,et al.  Combustion efficiency and its radiative component , 2004 .

[20]  A. Tewarson Generation of Heat and Chemical Compounds in Fires , 2002 .

[21]  G. Cox,et al.  Combustion fundamentals of fire , 1995 .

[22]  G. D. Raithby,et al.  A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media , 1990 .

[23]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[24]  Jean-Claude Latché,et al.  An L2‐stable approximation of the Navier–Stokes convection operator for low‐order non‐conforming finite elements , 2011 .

[25]  Damon Honnery,et al.  Soot mass growth modelling in laminar diffusion flames , 1992 .

[26]  Karim Van Maele,et al.  Application of two buoyancy-modified k–ε turbulence models to different types of buoyant plumes , 2006 .

[27]  Timo Korhonen,et al.  Two-model Monte Carlo Simulation of Fire Scenarios , 2005 .

[28]  Fenghui Jiang Flame radiation from polymer fires , 1998 .

[29]  Simo Hostikka,et al.  Advanced Probabilistic Simulation of NPP Fires , 2005 .

[30]  Soonil Nam,et al.  Numerical simulation of thermal plumes , 1993 .

[31]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[32]  S. Patankar,et al.  Finite volume method for radiation heat transfer , 1994 .

[33]  T. F. Smith,et al.  Evaluation of Coefficients for the Weighted Sum of Gray Gases Model , 1982 .

[34]  J. Kent,et al.  Prediction of carbon monoxide in fires by conditional moment closure , 2002 .

[35]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[36]  A. Snegirev,et al.  Statistical modeling of thermal radiation transfer in buoyant turbulent diffusion flames , 2004 .

[37]  T. Lundstedt,et al.  Experimental design and optimization , 1998 .

[38]  J. Sini,et al.  Numerical prediction of turbulent plane jets and forced plumes by use of the k-ε model of turbulence , 1987 .

[39]  Nedunchezhian Swaminathan,et al.  Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames , 1999 .

[40]  Robert W. Bilger,et al.  On the Eddy Break-Up coefficient , 1996 .

[41]  B. Hjertager,et al.  On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion , 1977 .

[42]  Michael M. Kostreva,et al.  Issues in evaluation of complex fire models , 1998 .

[43]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[44]  Weicheng Fan,et al.  A Zone‐type Model for a Building Fire and Its Sensitivity Analysis , 1996 .