Descente Infinie + Deduction
暂无分享,去创建一个
[1] Charisma Lee. A completeness theorem and a computer program for finding theorems derivable from given axioms , 1967 .
[2] Karel Berka,et al. Logik-Texte - kommentierte Auswahl zur Geschichte der modernen Logik (4. Aufl.) , 1971 .
[3] Cora Diamond,et al. Wittgenstein's Lectures on the Foundations of Mathematics. , 1977 .
[4] Frank van Harmelen,et al. The Oyster-Clam System , 1990, CADE.
[5] Dieter Hutter,et al. The Karlsruhe Induction Theorem Proving System , 1986, CADE.
[6] L. M. Milne-Thomson,et al. Grundlagen der Mathematik , 1935, Nature.
[7] Robert S. Boyer,et al. Computational Logic , 1990, ESPRIT Basic Research Series.
[8] Martin Giese,et al. Hilbert's epsilon-Terms in Automated Theorem Proving , 1999, TABLEAUX.
[9] P. Howard,et al. Consequences of the axiom of choice , 1998 .
[10] Tobias Schmidt-Samoa,et al. Flexible heuristics for simplification with conditional lemmas by marking formulas as forbidden, mandatory, obligatory, and generous , 2006, J. Appl. Non Class. Logics.
[11] Claus-Peter Wirth,et al. Abstract Notions and Inference Systems for Proofs by Mathematical Induction , 1994, CTRS.
[12] Dov M. Gabbay,et al. Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .
[13] A. Leisenring. Mathematical logic and Hilbert's ε-symbol , 1971 .
[14] Peter B. Andrews. General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..
[15] Balder ten Cate,et al. Question Answering: From Partitions to Prolog , 2002, TABLEAUX.
[16] Alan Bundy,et al. The Automation of Proof by Mathematical Induction , 1999, Handbook of Automated Reasoning.
[17] Domenico Cantone,et al. A Further and Effective Liberalization of the delta-Rule in Free Variable Semantic Tableaux , 1998, FTP.
[18] Dov M. Gabbay,et al. Handbook of the history of logic , 2004 .
[19] W. H. Bussey. The Origin of Mathematical Induction , 1917 .
[20] Claus-Peter Wirth,et al. Conditional Equational Specifications of Data Types with Partial Operations for Inductive Theorem Proving , 1997, RTA.
[21] Christoph Walther,et al. Mathematical induction , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming.
[22] Robert S. Boyer,et al. A computational logic handbook , 1979, Perspectives in computing.
[23] Mike Paterson,et al. Linear unification , 1976, STOC '76.
[24] Graham Wrightson,et al. Automation of Reasoning , 1983 .
[25] Claus-Peter Wirth. A New Indefinite Semantics for Hilbert's Epsilon , 2002, TABLEAUX.
[26] Sloman,et al. Automation of Reasoning , 1983, Symbolic Computation.
[27] Stig Kanger,et al. A Simplified Proof Method for Elementary Logic , 1959 .
[28] Christian G. Fermüller,et al. Non-elementary Speedups between Different Versions of Tableaux , 1995, TABLEAUX.
[29] Claus-Peter Wirth. Positive negative conditional equations: a constructor-based framework for specification and inductive theorem proving , 1997 .
[30] Wilfried Sieg,et al. Normal Natural Deduction Proofs (in classical logic) , 1998, Stud Logica.
[31] P. Fermat,et al. Oeuvres de Fermat , 1891 .
[32] Michael S. Mahoney,et al. The Mathematical Career of Pierre de Fermat, 1601-1665 , 1973 .
[33] Serge Autexier,et al. Hierarchical contextual reasoning , 2003 .
[34] Melvin Fitting,et al. First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.
[35] Dieter Hutter,et al. Coloring Terms to Control Equational Reasoning , 1997, Journal of Automated Reasoning.
[36] M. Fitting. Types, Tableaus, and Gödel's God , 2002 .
[37] Gopalan Nadathur,et al. Handbook of Logic in Artificial Intelligence and Logic Programming, Volume2, Deduction Methodologies , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 2.
[38] Peter Aczel,et al. Non-well-founded sets , 1988, CSLI lecture notes series.
[39] Alan Bundy,et al. The Use of Explicit Plans to Guide Inductive Proofs , 1988, CADE.
[40] Michael S. Mahoney. The mathematical career of Pierre de Fermat, 1601-1665 , 1996 .
[41] Claus-Peter Wirth. Full First-Order Free Variable Sequents and Tableaux in Implicit Induction , 1999, TABLEAUX.
[42] David Thomas,et al. The Art in Computer Programming , 2001 .
[43] M. Newman. On Theories with a Combinatorial Definition of "Equivalence" , 1942 .
[44] Kurt Von Fritz,et al. The Discovry of Incommensurability by Hippasus of Metapontum , 1945 .
[45] Manfred Kerber,et al. Proof Planning: A Practical Approach to Mechanized Reasoning in Mathematics , 1998 .
[46] Claus-Peter Wirth. Full First-Order Sequent and Tableau Calculi with Preservation of Solutions and the Liberalized delta-Rule but without Skolemization , 1998, FTP.
[47] Leonard Gillman,et al. Writing mathematics well , 1987 .
[48] J. Hintikka. The Principles of Mathematics Revisited: Introduction , 1996 .
[49] V. P. Orevkov. The Calculi of symbolic logic, 1 , 1971 .
[50] Victor J. Katz,et al. A History of Mathematics: An Introduction , 1998 .
[51] Tobias Schmidt-Samoa. Flexible heuristic control for combining automation and user-interaction in inductive theorem proving , 2005 .
[52] Frank van Harmelen,et al. Rippling: A Heuristic for Guiding Inductive Proofs , 1993, Artif. Intell..
[53] J. Bell,et al. Lectures on the Foundations of Mathematics , 2003 .
[54] G. Gibson. The Thirteen Books of Euclid's Elements , 1927, Nature.
[55] Serge Autexier. On the Dynamic Increase of Multiplicities in Matrix Proof Methods for Classical Higher-Order Logic , 2005, TABLEAUX.
[56] Bernhard Gramlich,et al. On Notions of Inductive Validity for First-Oder Equational Clauses , 1994, CADE.
[57] Christoph Walther,et al. Computing Induction Axioms , 1992, LPAR.
[58] Michaël Rusinowitch,et al. Implicit induction in conditional theories , 2004, Journal of Automated Reasoning.
[59] Peter Baumgartner,et al. Computing Answers with Model Elimination , 1997, Artif. Intell..
[60] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[61] Wayne Snyder,et al. Higher-Order Unification Revisited: Complete Sets of Transformations , 1989, J. Symb. Comput..
[62] Peter B. Andrews. Theorem Proving via General Matings , 1981, JACM.
[63] Bernhard Beckert,et al. The Even More Liberalized delta-Rule in Free Variable Semantic Tableaux , 1993, Kurt Gödel Colloquium.
[64] Claus-Peter Wirth,et al. History and Future of Implicit and Inductionless Induction: Beware the Old Jade and the Zombie! , 2005, Mechanizing Mathematical Reasoning.
[65] K. Barner. Das Leben Fermats , 2001 .
[66] Dieter Hutter,et al. Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday , 2005, Mechanizing Mathematical Reasoning.
[67] Martin Protzen. Lazy generation of induction hypotheses and patching faulty conjectures , 1995, DISKI.
[68] H. Hornich. Die gegenwärtige Lage in der mathematischen Grundlagenforschung. — Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie , 1939 .
[69] Christian G. Fermüller,et al. Lean Induction Principles for Tableaux , 1997, TABLEAUX.
[70] Alan Robinson,et al. Handbook of automated reasoning , 2001 .
[71] Peter Padawitz. Inductive Theorem Proving for Design Specification , 1996, J. Symb. Comput..
[72] Bernhard Gramlich,et al. A Guide to UNICOM, an Inductive Theorem Prover Based on Rewriting and Completion Techniques , 1999 .
[73] Tobias Schmidt-Samoa,et al. An Even Closer Integration of Linear Arithmetic into Inductive Theorem Proving , 2006, Calculemus.
[74] Victor J. Katz. The history of mathematics , 1992 .
[75] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[76] Gernot Salzer,et al. Automated Deduction in Classical and Non-Classical Logics , 2002, Lecture Notes in Computer Science.
[77] Peter B. Andrews. An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.
[78] Andrei Voronkov,et al. The Inverse Method , 2001, Handbook of Automated Reasoning.
[79] Alexander Leitsch,et al. The Resolution Calculus , 1997, Texts in Theoretical Computer Science An EATCS Series.
[80] Melvin Fitting,et al. On Quantified Modal Logic , 1999, Fundam. Informaticae.
[81] Alan Bundy,et al. The Design of the CADE-16 Inductive Theorem Prover Contest , 1999, CADE.
[82] Deepak Kapur,et al. An Overview of Rewrite Rule Laboratory (RRL) , 1989, RTA.
[83] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[84] A. O. Slisenko,et al. An Algorithm for a Machine Search of a Natural Logical Deduction in a Propositional Calculus , 1983 .
[85] F. Acerbi,et al. Plato: Parmenides 149a7-c3. A Proof by Complete Induction? , 2000 .
[86] Serge Autexier,et al. The CoRe Calculus , 2005, CADE.
[87] W. Bibel,et al. Automated deduction : a basis for applications , 1998 .
[88] Bernhard Gramlich,et al. A Constructor-Based Approach for Positive/Negative-Conditional Equational Specifications , 1992, CTRS.
[89] Andreas. Nonnengart. Strong Skolemization , 1996 .
[90] Nachum Dershowitz,et al. In handbook of automated reasoning , 2001 .
[91] Kurt von Fritz. The discovery of incommensurability by Hippasus of Metapontum , 2004 .
[92] Claus-Peter Wirth,et al. How to Prove Inductive Theorems? QUODLIBET! , 2003, CADE.
[93] Christoph Walther,et al. About eriFun , 2003 .
[94] W. V. Quine,et al. Natural deduction , 2021, An Introduction to Proof Theory.
[95] Ulrich Kühler. A tactic-based inductive theorem prover for data types with partial operations , 2000, DISKI.
[96] Wilhelm Ackermann,et al. Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .
[97] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[98] Bernhard Gramlich,et al. A Constructor-Based Approach to Positive/Negative-Conditional Equational Specifications , 1994, J. Symb. Comput..
[99] Hantao Zhang,et al. An overview of Rewrite Rule Laboratory (RRL) , 1995 .
[100] Peter H. Schmitt,et al. The liberalized δ-rule in free variable semantic tableaux , 2004, Journal of Automated Reasoning.
[101] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[102] Dale Miller,et al. Unification Under a Mixed Prefix , 1992, J. Symb. Comput..
[103] Martin Protzen,et al. Lazy Generation of Induction Hypotheses , 1994, CADE.
[104] Lincoln A. Wallen,et al. Automated proof search in non-classical logics - efficient matrix proof methods for modal and intuitionistic logics , 1990, MIT Press series in artificial intelligence.
[105] Christoph Kreitz,et al. Matrix-Based Inductive Theorem Proving , 2000, TABLEAUX.
[106] Krzysztof Gra̧bczewski,et al. Equivalents of the axiom of choice , 2001 .
[107] Marta Cialdea Mayer,et al. Free-Variable Tableaux for Constant-Domain Quantified Modal Logics with Rigid and Non-rigid Designation , 2001, IJCAR.
[108] M. E. Szabo,et al. The collected papers of Gerhard Gentzen , 1969 .
[109] Leo Bachmair,et al. Proof by consistency in equational theories , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.
[110] Christoph Benzmüller,et al. Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.
[111] Paolo Bussotti,et al. From Fermat to Gauss: indefinite descent and methods of reduction in number theory , 2006 .