A Two-Scale Discretization Scheme for Mixed Variational Formulation of Eigenvalue Problems
暂无分享,去创建一个
Wei Jiang | Hai Bi | Yidu Yang | Wenjun Wang | Wenjun Wang | Wei Jiang | Yu Zhang | Yu Zhang | Yidu Yang | H. Bi
[1] Patrick Ciarlet,et al. Augmented formulations for solving Maxwell equations , 2005 .
[2] B. Mercier,et al. Eigenvalue approximation by mixed and hybrid methods , 1981 .
[3] Jian Li,et al. Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations , 2006, Appl. Math. Comput..
[4] Martin Costabel,et al. Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.
[5] Rüdiger Verfürth,et al. Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .
[6] R. Kellogg,et al. A regularity result for the Stokes problem in a convex polygon , 1976 .
[7] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[8] Patrick Ciarlet,et al. Computing electromagnetic eigenmodes with continuous Galerkin approximations , 2008 .
[9] Hai Bi,et al. Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..
[10] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[11] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[12] P. G. Ciarlet,et al. Condition inf-sup pour l'élément fini de Taylor–Hood P2-iso-P1, 3-D ; application aux équations de MaxwellInf-sup condition for the 3-D P2-iso-P1 Taylor–Hood finite element; application to Maxwell equations , 2002 .
[13] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[14] Ian H. Sloan. Iterated Galerkin Method for Eigenvalue Problems , 1976 .
[15] Gong,et al. FINITE ELEMENT APPROXIMATIONS FOR SCHR ¨ ODINGER EQUATIONS WITH APPLICATIONS TO ELECTRONIC STRUCTURE COMPUTATIONS * , 2008 .
[16] Fang,et al. A TWO-SCALE HIGHER-ORDER FINITE ELEMENT DISCRETIZATION FOR SCHROEDINGER EQUATION , 2009 .
[17] Jinchao Xu,et al. Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.
[18] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[19] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[20] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[21] Yidu Yang,et al. Generalized Rayleigh quotient and finite element two-grid discretization schemes , 2009 .
[22] L. Trefethen,et al. Numerical linear algebra , 1997 .
[23] C.-S. Chien,et al. A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..
[24] Yidu Yang,et al. A two-grid discretization scheme for the Steklov eigenvalue problem , 2011 .
[25] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[26] Jinchao Xu,et al. A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..
[27] M. Costabel. A coercive bilinear form for Maxwell's equations , 1991 .
[28] R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .
[29] C. Bernardi,et al. Analysis of some finite elements for the Stokes problem , 1985 .
[30] F. Brezzi,et al. On the convergence of eigenvalues for mixed formulations , 1997 .
[31] Jinchao Xu,et al. Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..
[32] Aihui Zhou,et al. Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..
[33] Hai Bi,et al. A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem , 2011, Appl. Math. Comput..
[34] Hehu Xie,et al. Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .
[35] F. Kikuchi,et al. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .
[36] Annalisa Buffa,et al. Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements , 2009, Numerische Mathematik.
[37] E. Christiansen,et al. Handbook of Numerical Analysis , 1996 .
[38] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[39] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[40] K. Kolman,et al. A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .
[41] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .