A Two-Scale Discretization Scheme for Mixed Variational Formulation of Eigenvalue Problems

This paper discusses highly efficient discretization schemes for mixed variational formulation of eigenvalue problems. A new finite element two-scale discretization scheme is proposed by combining the mixed finite element method with the shifted-inverse power method for solving matrix eigenvalue problems. With this scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid . Theoretical analysis shows that the scheme has high efficiency. For instance, when using the Mini element to solve Stokes eigenvalue problem, the resulting solution can maintain an asymptotically optimal accuracy by taking , and when using the - element to solve eigenvalue problems of electric field, the calculation results can maintain an asymptotically optimal accuracy by taking . Finally, numerical experiments are presented to support the theoretical analysis.

[1]  Patrick Ciarlet,et al.  Augmented formulations for solving Maxwell equations , 2005 .

[2]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[3]  Jian Li,et al.  Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations , 2006, Appl. Math. Comput..

[4]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[5]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[6]  R. Kellogg,et al.  A regularity result for the Stokes problem in a convex polygon , 1976 .

[7]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[8]  Patrick Ciarlet,et al.  Computing electromagnetic eigenmodes with continuous Galerkin approximations , 2008 .

[9]  Hai Bi,et al.  Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[12]  P. G. Ciarlet,et al.  Condition inf-sup pour l'élément fini de Taylor–Hood P2-iso-P1, 3-D ; application aux équations de MaxwellInf-sup condition for the 3-D P2-iso-P1 Taylor–Hood finite element; application to Maxwell equations , 2002 .

[13]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[14]  Ian H. Sloan Iterated Galerkin Method for Eigenvalue Problems , 1976 .

[15]  Gong,et al.  FINITE ELEMENT APPROXIMATIONS FOR SCHR ¨ ODINGER EQUATIONS WITH APPLICATIONS TO ELECTRONIC STRUCTURE COMPUTATIONS * , 2008 .

[16]  Fang,et al.  A TWO-SCALE HIGHER-ORDER FINITE ELEMENT DISCRETIZATION FOR SCHROEDINGER EQUATION , 2009 .

[17]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[18]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[19]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[20]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[21]  Yidu Yang,et al.  Generalized Rayleigh quotient and finite element two-grid discretization schemes , 2009 .

[22]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[23]  C.-S. Chien,et al.  A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..

[24]  Yidu Yang,et al.  A two-grid discretization scheme for the Steklov eigenvalue problem , 2011 .

[25]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[26]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[27]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[28]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[29]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[30]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[31]  Jinchao Xu,et al.  Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..

[32]  Aihui Zhou,et al.  Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..

[33]  Hai Bi,et al.  A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem , 2011, Appl. Math. Comput..

[34]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .

[35]  F. Kikuchi,et al.  Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .

[36]  Annalisa Buffa,et al.  Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements , 2009, Numerische Mathematik.

[37]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[38]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[39]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[40]  K. Kolman,et al.  A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .

[41]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .