Seismic anisotropy in the mantle of a tectonically inverted extensional basin: A shear-wave splitting and mantle xenolith study on the western Carpathian-Pannonian region

[1]  M. Faccenda,et al.  Tomographic Image Interpretation and Central-Western Mediterranean-Like Upper Mantle Dynamics From Coupled Seismological and Geodynamic Modeling Approach , 2022, Frontiers in Earth Science.

[2]  G. Bokelmann,et al.  Constraints on Olivine Deformation From SKS Shear‐Wave Splitting Beneath the Southern Cascadia Subduction Zone Back‐Arc , 2021, Geochemistry, Geophysics, Geosystems.

[3]  C. Szabó,et al.  The ‘pargasosphere’ hypothesis: Looking at global plate tectonics from a new perspective , 2021 .

[4]  T. Ehlers,et al.  Controls by rheological structure of the lithosphere on the temporal evolution of continental magmatism: Inferences from the Pannonian Basin system , 2021, Earth and Planetary Science Letters.

[5]  A. Bálazs,et al.  Crustal Thinning From Orogen to Back‐Arc Basin: The Structure of the Pannonian Basin Region Revealed by P‐to‐S Converted Seismic Waves , 2021, Journal of Geophysical Research: Solid Earth.

[6]  E. Manea,et al.  Dehydration-induced earthquakes identified in a subducted oceanic slab beneath Vrancea, Romania , 2021, Scientific Reports.

[7]  G. Bokelmann,et al.  Shear-Wave Splitting in the Alpine Region , 2021, Geophysical Journal International.

[8]  C. Szabó,et al.  Effect of metasomatism on the electrical resistivity of the lithospheric mantle – An integrated research using magnetotelluric sounding and xenoliths beneath the Nógrád-Gömör Volcanic Field , 2021, Global and Planetary Change.

[9]  C. Szabó,et al.  Effect of water on the rheology of the lithospheric mantle in young extensional basin systems as shown by xenoliths from the Carpathian-Pannonian region , 2021, Global and Planetary Change.

[10]  G. Csillag,et al.  Uplift of the Transdanubian Range, Pannonian Basin: How fast and why? , 2020 .

[11]  C. Szabó,et al.  The role of water and compression in the genesis of alkaline basalts: Inferences from the Carpathian-Pannonian region , 2020, Lithos.

[12]  G. Houseman,et al.  Upper mantle deformation signatures of craton–orogen interaction in the Carpathian–Pannonian region from SKS anisotropy analysis , 2020, Geophysical Journal International.

[13]  Z. Wéber,et al.  3D P-wave velocity image beneath the Pannonian Basin using traveltime tomography , 2019, Acta Geodaetica et Geophysica.

[14]  F. Kong,et al.  Asthenospheric flow beneath the Carpathian-Pannonian region: Constraints from shear wave splitting analysis , 2019, Earth and Planetary Science Letters.

[15]  W. Griffin,et al.  Lateral and Vertical Heterogeneity in the Lithospheric Mantle at the Northern Margin of the Pannonian Basin Reconstructed From Peridotite Xenolith Microstructures , 2019, Journal of Geophysical Research: Solid Earth.

[16]  W. Griffin,et al.  Extremely low structural hydroxyl contents in upper mantle xenoliths from the Nógrád-Gömör Volcanic Field (northern Pannonian Basin): Geodynamic implications and the role of post-eruptive re-equilibration , 2019, Chemical Geology.

[17]  G. Bokelmann,et al.  Ambient-noise tomography of the wider Vienna Basin region , 2018, Geophysical Journal International.

[18]  Mohammad Reza Ghassemi,et al.  The effect of crustal anisotropy on SKS splitting analysis—synthetic models and real-data observations , 2018 .

[19]  H. Kopp,et al.  The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen , 2018, Surveys in Geophysics.

[20]  I. Molinari,et al.  AlpArray in Hungary: temporary and permanent seismological networks in the transition zone between the Eastern Alps and the Pannonian basin , 2018, Acta Geodaetica et Geophysica.

[21]  A. Carcaterra,et al.  The westward drift of the lithosphere: A tidal ratchet? , 2017 .

[22]  A. Tommasi,et al.  Fluid‐Enhanced Annealing in the Subcontinental Lithospheric Mantle Beneath the Westernmost Margin of the Carpathian‐Pannonian Extensional Basin System , 2017 .

[23]  A. Morelli,et al.  Full-waveform seismic tomography of the Vrancea, Romania, subduction region , 2017 .

[24]  D. Sokoutis,et al.  The interplay between subduction and lateral extrusion: A case study for the European Eastern Alps based on analogue models , 2017 .

[25]  W. Griffin,et al.  Multiple Metasomatism beneath the Nógrád-Gömör volcanic field (Northern Pannonian Basin) revealed by upper mantle peridotite xenoliths , 2017 .

[26]  G. Szanyi,et al.  The transition zone between the Eastern Alps and the Pannonian basin imaged by ambient noise tomography , 2017 .

[27]  L. Matenco Tectonics and Exhumation of Romanian Carpathians: Inferences from Kinematic and Thermochronological Studies , 2017 .

[28]  G. Bokelmann,et al.  Journal of Geophysical Research : Solid Earth Deformation in the asthenospheric mantle beneath the Carpathian-Pannonian Region , 2016 .

[29]  J. Chorowicz Genesis of the Pieniny Klippen Belt in the Carpathians: Possible effects of a major paleotransform fault in the Neo-Tethyan domain , 2016 .

[30]  G. Molnár,et al.  Tectonic and climatic control on terrace formation: Coupling in situ produced 10Be depth profiles and luminescence approach, Danube River, Hungary, Central Europe , 2016 .

[31]  A. Vauchez,et al.  Heterogeneity and anisotropy in the lithospheric mantle , 2015 .

[32]  G. Falus,et al.  Constraints on the thickness and seismic properties of the lithosphere in an extensional setting (Nógrád-Gömör Volcanic Field, Northern Pannonian Basin) , 2015, Acta Geodaetica et Geophysica.

[33]  D. Green Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle , 2015, Physics and Chemistry of Minerals.

[34]  P. Hrubcová,et al.  Complex local Moho topography in the Western Carpathians: Indication of the ALCAPA and the European Plate contact , 2015 .

[35]  G. Bokelmann,et al.  Slab detachment under the Eastern Alps seen by seismic anisotropy , 2015, Earth and planetary science letters.

[36]  T. Tóth,et al.  Evolution of the Pannonian basin and its geothermal resources , 2015 .

[37]  Geoffrey Blewitt,et al.  A geodetic plate motion and Global Strain Rate Model , 2014 .

[38]  A. Paul,et al.  A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region , 2014 .

[39]  M. Handy,et al.  Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion , 2014, International Journal of Earth Sciences.

[40]  G. Bokelmann,et al.  Seismic anisotropy and large-scale deformation of the Eastern Alps , 2013 .

[41]  Stephen S. Gao,et al.  Seismic anisotropy and mantle flow beneath the northern Great Plains of North America , 2013 .

[42]  Stephen S. Gao,et al.  Making Reliable Shear‐Wave Splitting Measurements , 2013 .

[43]  J. Tromp,et al.  Mapping Tectonic Deformation in the Crust and Upper Mantle Beneath Europe and the North Atlantic Ocean , 2013, Science.

[44]  A. Tommasi,et al.  Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root , 2013 .

[45]  G. Houseman,et al.  Upper mantle structures beneath the Carpathian–Pannonian region: Implications for the geodynamics of continental collision , 2012 .

[46]  L. Vecsey,et al.  Mapping seismic anisotropy of the lithospheric mantle beneath the northern and eastern Bohemian Massif (central Europe) , 2012 .

[47]  G. Stuart,et al.  Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian-Pannonian region: Asthenospheric flow as a driving force for Cenozoic extension and extrusion? , 2012 .

[48]  Stephen S. Gao,et al.  AnisDep: A FORTRAN program for the estimation of the depth of anisotropy using spatial coherency of shear-wave splitting parameters , 2011, Comput. Geosci..

[49]  E. Brückl,et al.  Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model , 2011 .

[50]  E. Brückl,et al.  Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe , 2011 .

[51]  G. Bada,et al.  Modelling recent deformation of the Pannonian lithosphere: Lithospheric folding and tectonic topography , 2010 .

[52]  J. Afonso,et al.  The lithospheric structure of the Western Carpathian-Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modelling , 2009 .

[53]  S. Cloetingh,et al.  P‐ and S‐velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data , 2009 .

[54]  László G.-Tóth,et al.  Active crustal deformation in two seismogenic zones of the Pannonian region — GPS versus seismological observations , 2009 .

[55]  M. Popa,et al.  SKS splitting observed at Romanian broad-band seismic network , 2008 .

[56]  Christophe Zaroli,et al.  SplitLab: A shear-wave splitting environment in Matlab , 2008, Comput. Geosci..

[57]  D. Bernoulli,et al.  The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units , 2008 .

[58]  G. Houseman,et al.  Intra-orogenic extension driven by gravitational instability: Carpathian-Pannonian orogeny , 2007 .

[59]  G. Bada,et al.  Present-day stress field and tectonic inversion in the Pannonian basin. , 2007 .

[60]  L. Vecsey,et al.  FAST TRACK PAPER: Upper mantle beneath the Eger Rift (Central Europe): plume or asthenosphere upwelling? , 2007 .

[61]  C. Szabó,et al.  Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary) , 2007 .

[62]  C. Szabó,et al.  Paleogene-early Miocene igneous rocks and geodynamics of the Alpine-Carpathian-Pannonian-Dinaric region: An integrated approach , 2007 .

[63]  S. Karato,et al.  Effect of water and stress on the lattice-preferred orientation of olivine , 2006 .

[64]  H. Thybo The heterogeneous upper mantle low velocity zone , 2006 .

[65]  A. Kenyeres,et al.  Tectonic implications of the GPS velocity field in the northern Adriatic region , 2005 .

[66]  J. Ritter,et al.  High-resolution teleseismic body-wave tomography beneath SE Romania - I. Implications for three-dimensional versus one-dimensional crustal correction strategies with a new crustal velocity model , 2005 .

[67]  C. Szabó,et al.  Composition and evolution of lithosphere beneath the Carpathian–Pannonian Region: a review , 2004 .

[68]  L. Csontos,et al.  Mesozoic plate tectonic reconstruction of the Carpathian region , 2004 .

[69]  Z. Pécskay,et al.  Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis , 2004 .

[70]  R. Lippitsch,et al.  Upper mantle structure beneath the Alpine orogen from high‐resolution teleseismic tomography , 2003 .

[71]  D. Mainprice,et al.  Anisotropic seismic properties of the upper mantle beneath the Torre Alfina area (Northern Apennines, Central Italy) , 2003 .

[72]  W. Spakman,et al.  Subduction and slab detachment in the Mediterranean-Carpathian region. , 2000, Science.

[73]  I. Dricker,et al.  Upper‐mantle flow in eastern Europe , 1999 .

[74]  M. Savage Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .

[75]  I. Dunkl,et al.  Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data , 1999, Geological Society, London, Special Publications.

[76]  W. Frisch,et al.  SLAB IN THE WRONG PLACE : LOWER LITHOSPHERIC MANTLE DELAMINATION IN THE LAST STAGE OF THE EASTERN CARPATHIAN SUBDUCTION RETREAT , 1998 .

[77]  S. Cloetingh,et al.  Stress-induced late stage subsidence anomalies in the Pannonian Basin , 1996 .

[78]  J. Plomerová,et al.  Joint interpretation of upper-mantle anisotropy based on teleseismic P-travel time delays and inversion of shear-wave splitting parameters , 1996 .

[79]  P. Silver SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .

[80]  P. Silver,et al.  The Interpretation of Shear‐Wave Splitting Parameters In the Presence of Two Anisotropic Layers , 1994 .

[81]  F. Horváth Towards a mechanical model for the formation of the Pannonian basin , 1993 .

[82]  G. Barruol,et al.  A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves , 1993 .

[83]  H. Kooi,et al.  Lithospheric necking and regional isostasy at extensional basins 2. Stress‐induced vertical motions and relative sea level changes , 1992 .

[84]  L. Csontos,et al.  Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region: Tectonophysics , 1992 .

[85]  I. Joó Recent vertical surface movements in the Carpathian Basin , 1992 .

[86]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[87]  P. R. Cobbold,et al.  Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity , 1991 .

[88]  David Mainprice,et al.  A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals , 1990 .

[89]  L. Royden,et al.  Evolution of the Pannonian Basin System: 2. Subsidence and thermal history , 1983 .

[90]  B. Burchfiel,et al.  Transform faulting, extension, and subduction in the Carpathian Pannonian region , 1982 .