On Families of Full Trios Containing Counter Machine Languages
暂无分享,去创建一个
[1] Seymour Ginsburg,et al. The mathematical theory of context free languages , 1966 .
[2] Luca Breveglieri,et al. Multi-Push-Down Languages and Grammars , 1996, Int. J. Found. Comput. Sci..
[3] Tero Harju,et al. Some Decision Problems Concerning Semilinearity and Commutation , 2002, J. Comput. Syst. Sci..
[4] Oscar H. Ibarra,et al. On bounded languages and reversal-bounded automata , 2016, Inf. Comput..
[5] Juha Kortelainen,et al. There Does Not Exist a Minimal Full Trio with Respect to Bounded Context-Free Languages , 2011, Developments in Language Theory.
[6] Seymour Ginsburg,et al. Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .
[7] Oscar H. Ibarra,et al. On Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L , 2016, CIAA.
[8] Grzegorz Rozenberg,et al. On ET0L Systems of Finite Index , 1978, Inf. Control..
[9] 守屋 悦朗,et al. J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .
[10] Sheila A. Greibach. Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..
[11] Oscar H. Ibarra,et al. Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.
[12] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[13] Oscar H. Ibarra,et al. Characterizations of Bounded semilinear Languages by One-Way and Two-Way Deterministic Machines , 2012, Int. J. Found. Comput. Sci..