Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: an epidemiological study

[1]  J. Hobman,et al.  Anthropogenic environmental drivers of antimicrobial resistance in wildlife. , 2019, The Science of the total environment.

[2]  M. Gillings,et al.  Environmental dimensions of antibiotic resistance: assessment of basic science gaps. , 2018, FEMS microbiology ecology.

[3]  E. Fèvre,et al.  Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to Human Populations? A Systematic Review , 2018, Foodborne pathogens and disease.

[4]  D. Civitello,et al.  Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  Maurice K. Murungi,et al.  Urban Livestock Keeping in the City of Nairobi: Diversity of Production Systems, Supply Chains, and Their Disease Management and Risks , 2017, Front. Vet. Sci..

[6]  S. Thakur,et al.  Horizontal Dissemination of Antimicrobial Resistance Determinants in Multiple Salmonella Serotypes following Isolation from the Commercial Swine Operation Environment after Manure Application , 2017, Applied and Environmental Microbiology.

[7]  M. Hess,et al.  Microdilution testing reveals considerable and diverse antimicrobial resistance of Escherichia coli, thermophilic Campylobacter spp. and Salmonella spp. isolated from wild birds present in urban areas , 2017, European Journal of Wildlife Research.

[8]  M. Begon,et al.  Urbanization and Disease Emergence: Dynamics at the Wildlife–Livestock–Human Interface , 2017, Trends in ecology & evolution.

[9]  J. Biesmeijer,et al.  Safeguarding pollinators and their values to human well-being , 2016, Nature.

[10]  Anne Chao,et al.  Species Richness: Estimation and Comparison , 2016 .

[11]  N. Williams,et al.  ‘Disperse abroad in the land’: the role of wildlife in the dissemination of antimicrobial resistance , 2016, Biology Letters.

[12]  S. Hay,et al.  Antibiotic resistance is the quintessential One Health issue , 2016, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[13]  J. O'Neill,et al.  Tackling drug-resistant infections globally: final report and recommendations , 2016 .

[14]  Eoin L. Brodie,et al.  Toward a Predictive Understanding of Earth’s Microbiomes to Address 21st Century Challenges , 2016, mBio.

[15]  Simon Bahrndorff,et al.  The Microbiome of Animals: Implications for Conservation Biology , 2016, International journal of genomics.

[16]  F. Prugnolle,et al.  Antimicrobial resistance in wildlife , 2016 .

[17]  W. Jetz,et al.  EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals , 2014 .

[18]  R. J. Hall,et al.  Too much of a good thing: resource provisioning alters infectious disease dynamics in wildlife , 2014, Biology Letters.

[19]  P. Legendre,et al.  Statistical methods for temporal and space–time analysis of community composition data† , 2014, Proceedings of the Royal Society B: Biological Sciences.

[20]  F. Knauer,et al.  Comparison of ESBL – And AmpC Producing Enterobacteriaceae and Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Migratory and Resident Population of Rooks (Corvus frugilegus) in Austria , 2013, PloS one.

[21]  Stephen P. Luby,et al.  A Strategy To Estimate Unknown Viral Diversity in Mammals , 2013, mBio.

[22]  Stephen M. Krone,et al.  Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome , 2013, Emerging infectious diseases.

[23]  T. Suslow,et al.  Modified Moore swab optimization and validation in capturing E. coli O157:H7 and Salmonella enterica in large volume field samples of irrigation water , 2013 .

[24]  Charles L. Hofacre,et al.  Enumeration of Salmonella and Campylobacter spp. in Environmental Farm Samples and Processing Plant Carcass Rinses from Commercial Broiler Chicken Flocks , 2013, Applied and Environmental Microbiology.

[25]  A. P. Williams,et al.  The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. , 2013, The Lancet. Infectious diseases.

[26]  L. Matthews,et al.  An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations , 2012, Proceedings of the Royal Society B: Biological Sciences.

[27]  S. McEwen,et al.  Antimicrobial Resistance in Escherichia coli Isolates from Raccoons (Procyon lotor) in Southern Ontario, Canada , 2012, Applied and Environmental Microbiology.

[28]  M. Falagas,et al.  Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[29]  R. Plowright,et al.  Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.) , 2011, Proceedings of the Royal Society B: Biological Sciences.

[30]  L. Wieler,et al.  Extended-Spectrum Beta-Lactamases Producing E. coli in Wildlife, yet Another Form of Environmental Pollution? , 2011, Front. Microbio..

[31]  Gaetano Borriello,et al.  Open data kit: tools to build information services for developing regions , 2010, ICTD.

[32]  Heather K. Allen,et al.  Call of the wild: antibiotic resistance genes in natural environments , 2010, Nature Reviews Microbiology.

[33]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[34]  Kate E. Jones,et al.  PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals , 2009 .

[35]  Anne Chao,et al.  Sufficient sampling for asymptotic minimum species richness estimators. , 2009, Ecology.

[36]  Robert H. Smith,et al.  The effect of habitat management on home-range size and survival of rural Norway rat populations , 2008 .

[37]  Tamás Székely,et al.  Avian body sizes in relation to fecundity, mating system, display behavior, and resource sharing , 2007 .

[38]  Marco Oliverio,et al.  Body mass as a predictive variable of home-range size among Italian mammals and birds , 2006 .

[39]  F. Cabello,et al.  Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. , 2006, Environmental microbiology.

[40]  Walter Jetz,et al.  The Scaling of Animal Space Use , 2004, Science.

[41]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[42]  Hanna Tuomisto,et al.  DISSECTING THE SPATIAL STRUCTURE OF ECOLOGICAL DATA AT MULTIPLE SCALES , 2004 .

[43]  H. Goldstein,et al.  Partitioning variation in multilevel models , 2002 .

[44]  Charles F. Harvey,et al.  Arsenic Mobility and Groundwater Extraction in Bangladesh , 2002, Science.

[45]  V. Wolters Invertebrate control of soil organic matter stability , 2000, Biology and Fertility of Soils.

[46]  M. Begon,et al.  Enterobacteria: Antibiotic resistance found in wild rodents , 1999, Nature.

[47]  Clinical,et al.  Performance standards for antimicrobial susceptibility testing , 2019 .

[48]  Luke S P Moore,et al.  Antimicrobials: access and sustainable eff ectiveness 2 Understanding the mechanisms and drivers of antimicrobial resistance , 2015 .

[49]  Simon N. Wood,et al.  Fast stable REML and ML estimation of semiparametric GLMs , 2010 .

[50]  Kiersten B. Johnson,et al.  The DHS wealth index , 2004 .

[51]  S. Iacus,et al.  Fractals and Statistics: An R Package Called Ifs , 2003 .

[52]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .

[53]  J. Ogutu,et al.  Send Orders of Reprints at Reprints@benthamscience.net Changing Wildlife Populations in Nairobi National Park and Adjoining Athi-kaputiei Plains: Collapse of the Migratory Wildebeest , 2022 .