Model-free control for unknown delayed systems

The use of model-free control (MFC) spreads now more and more in industry. Nevertheless, control unknown delayed systems with this method remains an open problem. In this contribution, we present the use of model-free control in this context and we propose a solution to improve the effectiveness of this approach using a parameter estimation.

[1]  Somanath Majhi,et al.  Obtaining controller parameters for a new Smith predictor using autotuning , 2000, Autom..

[2]  Carine Jauberthie,et al.  Identifiability of a nonlinear delayed-differential aerospace model , 2006, IEEE Transactions on Automatic Control.

[3]  C. C. Hang,et al.  A new Smith predictor for controlling a process with an integrator and long dead-time , 1994, IEEE Trans. Autom. Control..

[4]  Sylvain Calloch,et al.  Experimental comparison of classical PID and model-free control: Position control of a shape memory alloy active spring , 2011 .

[5]  Frédéric Rotella,et al.  Some contributions to estimation for model-free control , 2015 .

[6]  Cédric Join,et al.  Stability margins and model-free control: A first look , 2014, 2014 European Control Conference (ECC).

[7]  M. Ayadi,et al.  An algebraic control approach based on the estimation of an ultra-local Bro¨ıda model , 2015, 2015 4th International Conference on Systems and Control (ICSC).

[8]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[9]  Lino O. Santos,et al.  A robust multi-model predictive controller for distributed parameter systems , 2012 .

[10]  Michael Nikolaou,et al.  Model predictive controllers: A critical synthesis of theory and industrial needs , 2001 .

[11]  Cédric Join,et al.  Etude préliminaire d'une commande sans modèle pour papillon de moteur , 2008 .

[12]  Cédric Join,et al.  Model-free control , 2013, Int. J. Control.

[13]  Silviu-Iulian Niculescu,et al.  Survey on Recent Results in the Stability and Control of Time-Delay Systems* , 2003 .