Decreasing Functions with Applications to Penalization
暂无分享,去创建一个
X. Q. Yang | Alexander M. Rubinov | Bevil Milton Glover | B. M. Glover | A. Rubinov | X. Q. Yang | B. Glover
[1] C. Goh,et al. A sufficient and necessary condition for nonconvex constrained optimization , 1997 .
[2] R. Tyrrell Rockafellar,et al. Lagrange Multipliers and Optimality , 1993, SIAM Rev..
[3] A. M. Rubinov. Some properties of increasing convex-along-rays functions , 1999 .
[4] A. M. Rubinov,et al. Duality for increasing positively homogeneous functions and normal sets , 1998 .
[5] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[6] Xiaoqi Yang,et al. Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .
[7] Olvi L. Mangasarian,et al. Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..
[8] J. Burke. An exact penalization viewpoint of constrained optimization , 1991 .
[9] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[10] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[11] Diethard Pallaschke,et al. Foundations of Mathematical Optimization , 1997 .
[12] Semen S. Kutateladze,et al. MINKOWSKI DUALITY AND ITS APPLICATIONS , 1972 .
[13] Leon S. Lasdon,et al. Optimization Theory of Large Systems , 1970 .
[14] James V. Burke,et al. Calmness and exact penalization , 1991 .
[15] I. Singer. Abstract Convex Analysis , 1997 .
[16] Roberto Cominetti,et al. Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..
[17] V. G. Zhadan,et al. Exact auxiliary functions in optimization problems , 1991 .