A performance investigation of correlation-based and pilot-tone-assisted frequency offset compensation method for CO-OFDM.

We carry out a comprehensive analysis to examine the performance of our recently proposed correlation-based and pilot-tone-assisted frequency offset compensation method in coherent optical OFDM system. The frequency offset is divided into two parts: fraction part and integer part relative to the channel spacing. Our frequency offset scheme includes the correlation-based Schmidl algorithm for fraction part estimation as well as pilot-tone-assisted method for integer part estimation. In this paper, we analytically derive the error variance of fraction part estimation methods in the presence of laser phase noise using different correlation-based algorithms: Schmidl, Cox and Cyclic Prefix based. This analytical expression is given for the first time in the literature. Furthermore, we give a full derivation for the pilot-tone-assisted integer part estimation method using the OFDM model.