A note on generalized averaged Gaussian formulas

We have recently proposed a very simple numerical method for constructing the averaged Gaussian quadrature formulas. These formulas exist in many more cases than the real positive Gauss–Kronrod formulas. In this note we try to answer whether the averaged Gaussian formulas are an adequate alternative to the corresponding Gauss–Kronrod quadrature formulas, to estimate the remainder term of a Gaussian rule.

[1]  Jose G. Abascal ULTRASPHERICAL STIELTJES POLYNOMIALS AND GAUSS-KRONROD QUADRATURE BEHAVE NICELY FOR < 0 , 2006 .

[2]  Lothar Reichel,et al.  Anti-Szego quadrature rules , 2007, Math. Comput..

[3]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[4]  Petr Tichý,et al.  On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.

[5]  Dirk P. Laurie Accurate recovery of recursion coe cients from Gaussian quadrature formulas , 1999 .

[6]  Franz Peherstorfer,et al.  Stieltjes polynomials and functions of the second kind , 1995 .

[7]  Dirk Laurie,et al.  Computation of Gauss-type quadrature formulas , 2001 .

[8]  Lothar Reichel,et al.  Symmetric Gauss–Lobatto and Modified Anti-Gauss Rules , 2003 .

[9]  Miodrag M. Spalevic On generalized averaged Gaussian formulas , 2007, Math. Comput..

[10]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[11]  Franz Peherstorfer Characterization of Quadrature Formula II , 1984 .

[12]  Bernhard Beckermann,et al.  How to choose modified moments , 1998 .

[13]  Franz Peherstorfer,et al.  Ultraspherical Stieltjes Polynomials and Gauss-Kronrod Quadrature Behave Nicely for Lambda< 0 , 2007, SIAM J. Numer. Anal..

[14]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[15]  Dirk Laurie,et al.  Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..

[16]  R. K. Jain,et al.  A fourth order method for y″ = ƒ(x, y, y′) , 1983 .

[17]  Sven Ehrich,et al.  On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas , 2002 .

[18]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..

[19]  Franz Peherstorfer,et al.  Ultraspherical Gauss-Kronrod Quadrature Is Not Possible for λ > 3 , 2000, SIAM J. Numer. Anal..

[20]  Franz Peherstorfer,et al.  On positive quadrature formulas , 1993 .

[21]  Franz Peherstorfer,et al.  Stieltjes Polynomials and Gauss-Kronrod Quadrature for Jacobi Weight Functions , 2003, Numerische Mathematik.

[22]  W. Gautschi On Generating Orthogonal Polynomials , 1982 .

[23]  Gene H. Golub,et al.  Computation of Gauss-Kronrod quadrature rules , 2000, Math. Comput..

[24]  A. I. Hascelik Modified anti-Gauss and degree optimal average formulas for Gegenbauer measure , 2008 .

[25]  Franz Peherstorfer,et al.  Characterization of Positive Quadrature Formulas , 1981 .

[26]  Giovanni Monegato,et al.  Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights , 1978 .

[27]  Giovanni Monegato,et al.  An overview of the computational aspects of Kronrod quadrature rules , 2001, Numerical Algorithms.