A note on generalized averaged Gaussian formulas
暂无分享,去创建一个
[1] Jose G. Abascal. ULTRASPHERICAL STIELTJES POLYNOMIALS AND GAUSS-KRONROD QUADRATURE BEHAVE NICELY FOR < 0 , 2006 .
[2] Lothar Reichel,et al. Anti-Szego quadrature rules , 2007, Math. Comput..
[3] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[4] Petr Tichý,et al. On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.
[5] Dirk P. Laurie. Accurate recovery of recursion coe cients from Gaussian quadrature formulas , 1999 .
[6] Franz Peherstorfer,et al. Stieltjes polynomials and functions of the second kind , 1995 .
[7] Dirk Laurie,et al. Computation of Gauss-type quadrature formulas , 2001 .
[8] Lothar Reichel,et al. Symmetric Gauss–Lobatto and Modified Anti-Gauss Rules , 2003 .
[9] Miodrag M. Spalevic. On generalized averaged Gaussian formulas , 2007, Math. Comput..
[10] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[11] Franz Peherstorfer. Characterization of Quadrature Formula II , 1984 .
[12] Bernhard Beckermann,et al. How to choose modified moments , 1998 .
[13] Franz Peherstorfer,et al. Ultraspherical Stieltjes Polynomials and Gauss-Kronrod Quadrature Behave Nicely for Lambda< 0 , 2007, SIAM J. Numer. Anal..
[14] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[15] Dirk Laurie,et al. Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..
[16] R. K. Jain,et al. A fourth order method for y″ = ƒ(x, y, y′) , 1983 .
[17] Sven Ehrich,et al. On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas , 2002 .
[18] Dirk P. Laurie,et al. Anti-Gaussian quadrature formulas , 1996, Math. Comput..
[19] Franz Peherstorfer,et al. Ultraspherical Gauss-Kronrod Quadrature Is Not Possible for λ > 3 , 2000, SIAM J. Numer. Anal..
[20] Franz Peherstorfer,et al. On positive quadrature formulas , 1993 .
[21] Franz Peherstorfer,et al. Stieltjes Polynomials and Gauss-Kronrod Quadrature for Jacobi Weight Functions , 2003, Numerische Mathematik.
[22] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .
[23] Gene H. Golub,et al. Computation of Gauss-Kronrod quadrature rules , 2000, Math. Comput..
[24] A. I. Hascelik. Modified anti-Gauss and degree optimal average formulas for Gegenbauer measure , 2008 .
[25] Franz Peherstorfer,et al. Characterization of Positive Quadrature Formulas , 1981 .
[26] Giovanni Monegato,et al. Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights , 1978 .
[27] Giovanni Monegato,et al. An overview of the computational aspects of Kronrod quadrature rules , 2001, Numerical Algorithms.