Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory‐related rhinal cortices

To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. J. Comp. Neurol. 521:4260–4283, 2013. © 2013 Wiley Periodicals, Inc.

[1]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[2]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[3]  H. Barbas,et al.  Pathways for Emotions and Attention Converge on the Thalamic Reticular Nucleus in Primates , 2012, The Journal of Neuroscience.

[4]  N. Alpert,et al.  A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. , 2006, Journal of neurosurgery.

[5]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[6]  S. Palay,et al.  The morphology of synapses , 1996, Journal of neurocytology.

[7]  D. Amaral,et al.  Hippocampal‐neocortical interaction: A hierarchy of associativity , 2000, Hippocampus.

[8]  L. Squire,et al.  Structure and function of declarative and nondeclarative memory systems. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. Barbas,et al.  Medial Prefrontal Cortices Are Unified by Common Connections With Superior Temporal Cortices and Distinguished by Input From Memory‐Related Areas in the Rhesus Monkey , 1999, The Journal of comparative neurology.

[10]  R. Bluhm,et al.  A review of neuroimaging studies in PTSD: heterogeneity of response to symptom provocation. , 2006, Journal of psychiatric research.

[11]  H. Barbas,et al.  The Anterior Cingulate Cortex May Enhance Inhibition of Lateral Prefrontal Cortex Via m2 Cholinergic Receptors at Dual Synaptic Sites , 2012, The Journal of Neuroscience.

[12]  A. Nappi,et al.  Alzheimer ' s Disease : Cell-Specific Pathology Isolates the Hippocampal Formation , 2022 .

[13]  Fool me once, shame on me—fool me twice, blame the ACC , 2006, Nature Neuroscience.

[14]  K. Rockland,et al.  Divergent cortical connections to entorhinal cortex from area TF in the macaque , 1997, The Journal of comparative neurology.

[15]  D. Melchitzky,et al.  Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex , 2005, Neuroscience.

[16]  Gang Tong,et al.  Multivesicular release from excitatory synapses of cultured hippocampal neurons , 1994, Neuron.

[17]  G. V. Van Hoesen,et al.  Orbitofrontal cortex pathology in Alzheimer's disease. , 2000, Cerebral cortex.

[18]  N Butters,et al.  Cortical Afferents to the Entorhinal Cortex of the Rhesus Monkey , 1972, Science.

[19]  V. Meskenaite,et al.  Calretinin‐immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis , 1997, The Journal of comparative neurology.

[20]  J. Evenden,et al.  The effects of 6-hydroxydopamine lesions of the nucleus accumbens and caudate nucleus of rats on feeding in a novel environment , 1985, Behavioural Brain Research.

[21]  P. Fries,et al.  Gamma-Band Synchronization in the Macaque Hippocampus and Memory Formation , 2009, The Journal of Neuroscience.

[22]  Andrew M. Clark,et al.  Intersection of Reward and Memory in Monkey Rhinal Cortex , 2012, The Journal of Neuroscience.

[23]  P. Andersen,et al.  Mode of activation of hippocampal pyramidal cells by excitatory synapses on dendrites , 2004, Experimental Brain Research.

[24]  K. Saleem,et al.  Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys , 2005, The Journal of comparative neurology.

[25]  Lee M. Miller,et al.  Stimulus-Based State Control in the Thalamocortical System , 2000, The Journal of Neuroscience.

[26]  G. V. Van Hoesen,et al.  Contingent Vulnerability of Entorhinal Parvalbumin-Containing Neurons in Alzheimer’s Disease , 1996, The Journal of Neuroscience.

[27]  H. Barbas,et al.  Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex , 1995, Neuroscience & Biobehavioral Reviews.

[28]  H. Barbas,et al.  Sequential and parallel circuits for emotional processing in primate orbitofrontal cortex , 2006 .

[29]  D. Hill,et al.  Gustatory terminal field organization and developmental plasticity in the nucleus of the solitary tract revealed through triple‐fluorescence labeling , 2006, The Journal of comparative neurology.

[30]  Timothy E. J. Behrens,et al.  Optimal decision making and the anterior cingulate cortex , 2006, Nature Neuroscience.

[31]  G. V. Hoesen,et al.  Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey , 1982, Brain Research.

[32]  B. Schwaller,et al.  A polyclonal goat antiserum against the calcium-binding protein calretinin is a versatile tool for various immunochemical techniques , 1999, Journal of Neuroscience Methods.

[33]  C. Gerday,et al.  Monoclonal antibodies directed against the calcium binding protein parvalbumin. , 1988, Cell calcium.

[34]  H. Eichenbaum,et al.  Evolution of declarative memory , 2006, Hippocampus.

[35]  F. H. Lopes da Silva,et al.  Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re‐entrance in the hippocampal–entorhinal system , 2003, The European journal of neuroscience.

[36]  H. Soininen,et al.  Distribution of parvalbumin‐, calretinin‐, and calbindin‐D28k–immunoreactive neurons and fibers in the human entorhinal cortex , 1997, The Journal of comparative neurology.

[37]  Timothy E. J. Behrens,et al.  Functional organization of the medial frontal cortex , 2007, Current Opinion in Neurobiology.

[38]  J. Fell,et al.  Ripples in the medial temporal lobe are relevant for human memory consolidation. , 2008, Brain : a journal of neurology.

[39]  S. Sesack,et al.  Projections from the paraventricular nucleus of the thalamus to the rat prefrontal cortex and nucleus accumbens shell: Ultrastructural characteristics and spatial relationships with dopamine afferents , 2003, The Journal of comparative neurology.

[40]  D. Peterson,et al.  Cell‐specific expression of neuropeptide Y Y1 receptor immunoreactivity in the rat basolateral amygdala , 2009, The Journal of comparative neurology.

[41]  L. Swanson,et al.  Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  H. Barbas,et al.  Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey , 1993, Neuroscience.

[43]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[44]  R. Saunders,et al.  Projections from Gudden's tegmental nuclei to the mammillary body region in the cynomolgus monkey (Macaca fascicularis) , 2012, The Journal of comparative neurology.

[45]  H. Barbas,et al.  Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure , 2006, The European journal of neuroscience.

[46]  M. Feinberg,et al.  Specificity in inhibitory systems associated with prefrontal pathways to temporal cortex in primates. , 2007, Cerebral cortex.

[47]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections , 1975, Brain Research.

[48]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[49]  B. Walmsley,et al.  Diversity of structure and function at mammalian central synapses , 1998, Trends in Neurosciences.

[50]  W. Suzuki Making New Memories , 2007, Annals of the New York Academy of Sciences.

[51]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[52]  M. Witter,et al.  Topographical and laminar organization of subicular projections to the parahippocampal region of the rat , 2003, The Journal of comparative neurology.

[53]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[54]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[55]  Hilary C. Watson,et al.  A Role for Perirhinal Cortex in Memory for Novel Object–Context Associations , 2012, The Journal of Neuroscience.

[56]  G. V. Van Hoesen,et al.  Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. , 1977, Science.

[57]  Kathleen S Rockland,et al.  Long‐distance corticocortical GABAergic neurons in the adult monkey white and gray matter , 2007, The Journal of comparative neurology.

[58]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[59]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Roger D. Traub,et al.  Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks , 2012, Neuron.

[61]  W. Suzuki,et al.  Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[63]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[64]  D. Amaral,et al.  Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys , 2004, The Journal of comparative neurology.

[65]  A. Weible,et al.  Remembering to attend: The anterior cingulate cortex and remote memory , 2013, Behavioural Brain Research.

[66]  S. Sesack,et al.  Callosal terminals in the rat prefrontal cortex: Synaptic targets and association with GABA‐immunoreactive structures , 1998, Synapse.

[67]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[68]  Andrew M. Clark,et al.  Interaction Between Orbital Prefrontal and Rhinal Cortex Is Required for Normal Estimates of Expected Value , 2013, The Journal of Neuroscience.

[69]  Wendy A. Suzuki,et al.  Encoding New Episodes and Making Them Stick , 2006, Neuron.

[70]  B. Schwaller,et al.  Monoclonal antibodies recognizing epitopes of calretinins: dependence on Ca2+-binding status and differences in antigen accessibility in colon cancer cells. , 2002, Cell calcium.

[71]  J. Bachevalier,et al.  Memory for spatial location and object‐place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex , 2008, Hippocampus.

[72]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[73]  D. Amaral,et al.  Topographical and laminar distribution of cortical input to the monkey entorhinal cortex , 2007, Journal of anatomy.

[74]  H. Barbas,et al.  Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression , 2003, BMC Neuroscience.

[75]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[76]  H. Barbas,et al.  Synapses with Inhibitory Neurons Differentiate Anterior Cingulate from Dorsolateral Prefrontal Pathways Associated with Cognitive Control , 2009, Neuron.

[77]  V. Howard,et al.  Unbiased Stereology: Three-Dimensional Measurement in Microscopy , 1998 .

[78]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  W. W. Stewart Lucifer dyes—highly fluorescent dyes for biological tracing , 1981, Nature.

[80]  H. Barbas,et al.  Parallel Driving and Modulatory Pathways Link the Prefrontal Cortex and Thalamus , 2007, PloS one.

[81]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[82]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[83]  C. Stevens Neurotransmitter Release at Central Synapses , 2003, Neuron.

[84]  M. Shidara,et al.  Stimulus-Related Activity during Conditional Associations in Monkey Perirhinal Cortex Neurons Depends on Upcoming Reward Outcome , 2012, Journal of Neuroscience.

[85]  C. Aoki,et al.  Muscarinic acetylcholine receptors in macaque V1 are most frequently expressed by parvalbumin‐immunoreactive neurons , 2008, The Journal of comparative neurology.

[86]  D. Amaral,et al.  Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex , 1998, The Journal of comparative neurology.

[87]  J. Brandstätter,et al.  SNAP25 expression in mammalian retinal horizontal cells , 2011, The Journal of comparative neurology.

[88]  Helen Barbas,et al.  Sensory Pathways and Emotional Context for Action in Primate Prefrontal Cortex , 2011, Biological Psychiatry.

[89]  H. Barbas,et al.  Prefrontal Projections to the Thalamic Reticular Nucleus form a Unique Circuit for Attentional Mechanisms , 2006, The Journal of Neuroscience.

[90]  Philip G. F. Browning,et al.  Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions , 2009, Science.

[91]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[92]  K. Saleem,et al.  Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey , 2008, The Journal of comparative neurology.

[93]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[94]  Marc W Howard,et al.  Theta and Gamma Oscillations during Encoding Predict Subsequent Recall , 2003, The Journal of Neuroscience.

[95]  W. Suzuki Untangling memory from perception in the medial temporal lobe , 2010, Trends in Cognitive Sciences.

[96]  Timothy E. J. Behrens,et al.  Frontal Cortex Subregions Play Distinct Roles in Choices between Actions and Stimuli , 2008, The Journal of Neuroscience.

[97]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics , 1996, The Journal of comparative neurology.

[98]  D. Pandya,et al.  Efferent connections of the cingulate gyrus in the rhesus monkey , 1981, Experimental Brain Research.

[99]  Roger D. Traub,et al.  Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex , 2011, The Journal of Neuroscience.

[100]  H. Barbas Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices , 2000, Brain Research Bulletin.

[101]  H. Wässle,et al.  Mirror‐symmetrical populations of wide‐field amacrine cells of the macaque monkey retina , 2008, The Journal of comparative neurology.

[102]  Pierre Lavenex,et al.  Postmortem changes in the neuroanatomical characteristics of the primate brain: Hippocampal formation , 2009, The Journal of comparative neurology.

[103]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[104]  D. Amaral,et al.  Topographical organization of the entorhinal projection to the dentate gyrus of the monkey , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[106]  A. Lörincz,et al.  Physiological patterns in the hippocampo‐entorhinal cortex system , 2000, Hippocampus.

[107]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[108]  D. Amaral,et al.  Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents , 2008, The Journal of comparative neurology.

[109]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.

[110]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[111]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[112]  G. V. Van Hoesen,et al.  The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. , 1991, Cerebral cortex.

[113]  G. Buzsáki,et al.  Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[114]  Jonathan D. Cohen,et al.  Conflict monitoring and anterior cingulate cortex: an update , 2004, Trends in Cognitive Sciences.

[115]  J. DeFelipe,et al.  Synaptic Connections of Calretinin-Immunoreactive Neurons in the Human Neocortex , 1997, The Journal of Neuroscience.

[116]  B. Kolk,et al.  The Psychobiology of Traumatic Memory , 1997, Annals of the New York Academy of Sciences.

[117]  R. Insausti,et al.  Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis) , 2005, The European journal of neuroscience.

[118]  M. Mishkin,et al.  Stimulus recognition , 1994, Current Opinion in Neurobiology.

[119]  H. Barbas Flow of information for emotions through temporal and orbitofrontal pathways , 2007, Journal of anatomy.

[120]  W. Penfield,et al.  The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1968 .

[121]  M. de Curtis,et al.  Propagation of Neuronal Activity along the Neocortical–Perirhinal–Entorhinal Pathway in the Guinea Pig , 2002, The Journal of Neuroscience.

[122]  A. Norman,et al.  Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. , 1990, Cell calcium.

[123]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[124]  Douglas L Rosene,et al.  Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study , 2003, The Journal of comparative neurology.

[125]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[126]  A. Kavushansky,et al.  Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD. , 2008, Progress in brain research.

[127]  C. Heizmann,et al.  Calcium-binding protein parvalbumin as a neuronal marker , 1981, Nature.

[128]  Hideki Kondo,et al.  Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys , 2003, The Journal of comparative neurology.

[129]  Stefan Everling,et al.  Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation , 2011, PLoS biology.

[130]  R. Insausti,et al.  Convergence of unimodal and polymodal sensory input to the entorhinal cortex in the fascicularis monkey , 2008, Neuroscience.

[131]  G. Buzsáki,et al.  High-Frequency Oscillations in the Output Networks of the Hippocampal–Entorhinal Axis of the Freely Behaving Rat , 1996, The Journal of Neuroscience.

[132]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[133]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[134]  Helen Barbas,et al.  Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala , 2008, NeuroImage.

[135]  D. Amaral,et al.  Distribution of parvalbumin‐immunoreactive cells and fibers in the monkey temporal lobe: The hippocampal formation , 1993, The Journal of comparative neurology.

[136]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[137]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[138]  K. Rockland,et al.  Long‐range interneurons within the medial pulvinar nucleus of macaque monkeys , 2006, The Journal of comparative neurology.

[139]  D. Durstewitz,et al.  Contextual encoding by ensembles of medial prefrontal cortex neurons , 2012, Proceedings of the National Academy of Sciences.

[140]  Jamie G. Bunce,et al.  Prefrontal pathways target excitatory and inhibitory systems in memory-related medial temporal cortices , 2011, NeuroImage.

[141]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[142]  Jamie G. Bunce,et al.  Prefrontal Pathways that Control Attention , 2013 .

[143]  Alex Martin,et al.  Access the most recent version at doi: 10.1101/lm.251906 , 2006 .

[144]  O. Garaschuk,et al.  Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[145]  T. Womelsdorf,et al.  Neuronal coherence during selective attentional processing and sensory–motor integration , 2006, Journal of Physiology-Paris.

[146]  H. Barbas,et al.  Complementary roles of prefrontal cortical regions in cognition, memory, and emotion in primates. , 2000, Advances in neurology.

[147]  Andreas Burkhalter,et al.  Distinct GABAergic Targets of Feedforward and Feedback Connections Between Lower and Higher Areas of Rat Visual Cortex , 2003, The Journal of Neuroscience.

[148]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[149]  Christopher G. Wilson,et al.  A GABAergic inhibitory microcircuit controlling cholinergic outflow to the airways. , 2004, Journal of applied physiology.

[150]  A. Zaitsev,et al.  Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. , 2005, Cerebral cortex.

[151]  M. Wilson,et al.  Coordinated Interactions between Hippocampal Ripples and Cortical Spindles during Slow-Wave Sleep , 1998, Neuron.

[152]  H. Barbas,et al.  The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. , 2000, Cerebral cortex.

[153]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections , 2004, The Journal of comparative neurology.

[154]  D. Paré,et al.  The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus , 2004, Progress in Neurobiology.

[155]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[156]  J. Mangold,et al.  Postnatal reorganization of primary afferent terminal fields in the rat gustatory brainstem is determined by prenatal dietary history , 2008, The Journal of comparative neurology.

[157]  B. Staresina,et al.  Medial Temporal Theta/Alpha Power Enhancement Precedes Successful Memory Encoding: Evidence Based on Intracranial EEG , 2011, The Journal of Neuroscience.

[158]  A. Reiner,et al.  Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies , 1992, Journal of Neuroscience Methods.

[159]  S. Epstein,et al.  Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model , 2008, Proceedings of the National Academy of Sciences.

[160]  K. Rockland,et al.  Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. , 1999, Cerebral cortex.

[161]  D. Paré,et al.  Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex. , 2004, Journal of neurophysiology.

[162]  D. Paré,et al.  Learning-Related Facilitation of Rhinal Interactions by Medial Prefrontal Inputs , 2007, The Journal of Neuroscience.

[163]  Helen Barbas,et al.  Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates. , 2006, Cerebral cortex.

[164]  Nicola K. Ferdinand,et al.  The Processing of Unexpected Positive Response Outcomes in the Mediofrontal Cortex , 2012, The Journal of Neuroscience.

[165]  Jason P. Mitchell,et al.  Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[166]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[167]  E. Procyk,et al.  Expectations, gains, and losses in the anterior cingulate cortex , 2007, Cognitive, affective & behavioral neuroscience.

[168]  M. Witter,et al.  Significance of the deep layers of entorhinal cortex for transfer of both perirhinal and amygdala inputs to the hippocampus , 2008, Neuroscience Research.

[169]  M. Witter,et al.  Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. , 2003, Journal of neurophysiology.

[170]  D. Paré,et al.  Spontaneous activity of the perirhinal cortex in behaving cats , 1999, Neuroscience.

[171]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[172]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[173]  S. Wise,et al.  Why is there a special issue on perirhinal cortex in a journal called hippocampus? The perirhinal cortex in historical perspective , 2012, Hippocampus.

[174]  L. Frank,et al.  Single Neurons in the Monkey Hippocampus and Learning of New Associations , 2003, Science.

[175]  Helen Barbas,et al.  Anterior Cingulate Synapses in Prefrontal Areas 10 and 46 Suggest Differential Influence in Cognitive Control , 2010, The Journal of Neuroscience.

[176]  D. Paré,et al.  Ultrastructural organization of medial prefrontal inputs to the rhinal cortices , 2006, The European journal of neuroscience.

[177]  C. Elger,et al.  Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling , 2001, Nature Neuroscience.

[178]  G. Cheron,et al.  Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[179]  Michael J. Jutras,et al.  Synchronous neural activity and memory formation , 2010, Current Opinion in Neurobiology.