Satellite Precipitation Measurements for Water Resource Monitoring 1

:  Satellites offer an unrivaled vantage point to observe and measure Earth system processes and parameters. Observations of meteorological phenomena permit a more holistic view of the weather and climate that is not possible through conventional surface observations. Precipitation (rain and snow) in particular, benefit from such observations since precipitation is spatially and temporally highly variable: conventional gauge and radar measurements tend to be land-based with variable coverage. This paper provides an overview of the satellite systems that provide the observations, the techniques used to derive precipitation from the observations, and examples of the precipitation products available for users to access.

[1]  P. Xie,et al.  The Global Precipitation Climatology Project: First Algorithm Intercomparison Project , 1994 .

[2]  A. Gruber,et al.  GOES Multispectral Rainfall Algorithm (GMSRA) , 2001 .

[3]  M. Todd,et al.  A Combined Satellite Infrared and Passive Microwave Technique for Estimation of Small-Scale Rainfall , 1999 .

[4]  J. Schmetz,et al.  Supplement to An Introduction to Meteosat Second Generation (MSG): SEVIRI CALIBRATION , 2002 .

[5]  Frank S. Marzano,et al.  Results of WetNet PIP-2 Project , 1998 .

[6]  P. Bauer,et al.  The International Precipitation Working Group and Its Role in the Improvement of Quantitative Precipitation Measurements. , 2006 .

[7]  David B. Wolff,et al.  Ground Validation for the Tropical Rainfall Measuring Mission (TRMM) , 2005 .

[8]  D. Kniveton,et al.  The first WetNet precipitation intercomparison project (PIP‐1): Interpretation of results , 1994 .

[9]  B. N. Meisner,et al.  The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982-84 , 1987 .

[10]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[11]  M. Manton,et al.  Performance of Satellite Rainfall Estimation Algorithms during TOGA COARE. , 1998 .

[12]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[13]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[14]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[16]  H. Goodman,et al.  The WetNet project , 1994 .

[17]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Chris Kidd,et al.  Satellite Rainfall Estimation Using a Combined Pasive Microwave and Infrared Algorithm. , 2003 .

[19]  H. M. Goodman,et al.  The First WetNet Precipitation Intercomparison Project (PIP-1) , 1994 .

[20]  A. Gruber,et al.  Results from the GPCP Algorithm Intercomparison Programme , 1996 .

[21]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[22]  R. Scofield,et al.  Status and Outlook of Operational Satellite Precipitation Algorithms for Extreme-Precipitation Events , 2003 .

[23]  R. Adler,et al.  Intercomparison of global precipitation products : The third Precipitation Intercomparison Project (PIP-3) , 2001 .

[24]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[25]  Misako Kachi,et al.  Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[26]  J. Janowiak,et al.  COMPARISON OF NEAR-REAL-TIME PRECIPITATION ESTIMATES FROM SATELLITE OBSERVATIONS AND NUMERICAL MODELS , 2007 .

[27]  Dominic Kniveton,et al.  The advantages and disadvantages of statistically -derived/empirically-calibrated passive microwave algorithms , 1998 .