Optimization-based Shrinking Dimer Method for Finding Transition States

We present a new and efficient optimization-based shrinking dimer (OSD) algorithm for finding transition states associated with a given energy landscape. The transition states are given by index-one saddle points of the energy surface. By constructing the rotation and translation steps in the classical dimer method under an optimization framework, we are able to take advantage of more powerful optimization methods to substantially speed up the computation of transition states. Specifically, the Barzilai--Borwein gradient method is proposed as an effective implementation of OSD. We show that the OSD method is the generalized formulation of the original shrinking dimer dynamics (SDD) and enjoys superlinear convergence. We test various numerical examples, including some standard lower dimensional test examples, a cluster of seven particles, seven-atom island on the (111) surface of an FCC crystal, and nucleation in phase transformations. The results demonstrate that the OSD method with the proposed Barzilai-...

[1]  M. Frisch,et al.  Using redundant internal coordinates to optimize equilibrium geometries and transition states , 1996, J. Comput. Chem..

[2]  Qiang Du,et al.  Shrinking Dimer Dynamics and Its Applications to Saddle Point Search , 2012, SIAM J. Numer. Anal..

[3]  Terrence G. Oas,et al.  The energy landscape of a fast-folding protein mapped by Ala→Gly Substitutions , 1997, Nature Structural Biology.

[4]  Christoph Dellago,et al.  Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements , 1998 .

[5]  G. Henkelman,et al.  Methods for Finding Saddle Points and Minimum Energy Paths , 2002 .

[6]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[7]  Qiang Du,et al.  Finding Critical Nuclei in Phase Transformations by Shrinking Dimer Dynamics and its Variants , 2014 .

[8]  R. Miron,et al.  The Step and Slide method for finding saddle points on multidimensional potential surfaces , 2001 .

[9]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[10]  L. Liao,et al.  R-linear convergence of the Barzilai and Borwein gradient method , 2002 .

[11]  W. E,et al.  Nucleation of ordered phases in block copolymers. , 2010, Physical review letters.

[12]  J. Baker An algorithm for the location of transition states , 1986 .

[13]  Jin Yun Yuan,et al.  Modified Two-Point Stepsize Gradient Methods for Unconstrained Optimization , 2002, Comput. Optim. Appl..

[14]  Qiang Du,et al.  Simultaneous prediction of morphologies of a critical nucleus and an equilibrium precipitate in solids , 2009 .

[15]  Xiang Zhou,et al.  An Iterative Minimization Formulation for Saddle Point Search , 2014, SIAM J. Numer. Anal..

[16]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[17]  David J. Wales,et al.  Global optimization and folding pathways of selected α-helical proteins , 2005 .

[18]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[19]  Qiang Du,et al.  Morphology of critical nuclei in solid-state phase transformations. , 2007, Physical review letters.

[20]  W. Grantham Gradient Transformation Trajectory Following Algorithms for Determining Stationary Min-Max Saddle Points , 2007 .

[21]  H. Scheraga,et al.  Minimization of polypeptide energy. XI. The method of gentlest ascent. , 1971, Archives of biochemistry and biophysics.

[22]  N. Gould,et al.  An Efficient Dimer Method With Preconditioning And Linesearch , 2014, 1407.2817.

[23]  N. Govind,et al.  A generalized synchronous transit method for transition state location , 2003 .

[24]  Sigurdur F. Hafstein,et al.  Efficient Sampling of Saddle Points with the Minimum-Mode Following Method , 2011, SIAM J. Sci. Comput..

[25]  P. Schleyer,et al.  Internal conrotation and disrotation in H2BCH2BH2 and diborylmethane 1,3 H exchange , 1997 .

[26]  B. Eckhardt Irregular scattering , 1988 .

[27]  G M Crippen,et al.  Minimization of polypeptide energy. X. A global search algorithm. , 1971, Archives of biochemistry and biophysics.

[28]  G. Barkema,et al.  Traveling through potential energy landscapes of disordered materials: The activation-relaxation technique , 1997, cond-mat/9710023.

[29]  M. Raydan On the Barzilai and Borwein choice of steplength for the gradient method , 1993 .

[30]  Thierry Deutsch,et al.  Optimized energy landscape exploration using the ab initio based activation-relaxation technique. , 2011, The Journal of chemical physics.

[31]  Ya-xiang,et al.  DISTURBED SPARSE LINEAR EQUATIONS OVER THE 0-1 FINITE FIELD 1) , 2006 .

[32]  E Weinan,et al.  The gentlest ascent dynamics , 2010, 1011.0042.

[33]  M. Marinica,et al.  Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces. , 2008, The Journal of chemical physics.

[34]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[35]  A. Heuer Energy Landscapes. Applications to Clusters, Biomolecules and Glasses. By David J. Wales. , 2005 .

[36]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[37]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[38]  G. Henkelman,et al.  Comparison of methods for finding saddle points without knowledge of the final states. , 2004, The Journal of chemical physics.

[39]  Qiang Du,et al.  Constrained shrinking dimer dynamics for saddle point search with constraints , 2012, J. Comput. Phys..