Conceptual design and optimization of chemical processes under uncertainty by two-stage programming

Abstract This contribution presents a method and a tool for modelling and optimizing process superstructures in the early phase of process design where the models of the processing units and other data are inaccurate. To adequately deal with this uncertainty, we employ a two-stage formulation where the operational parameters can be adapted to the realization of the uncertainty while the design parameters are the first-stage decisions. The uncertainty is represented by a set of discrete scenarios and the optimization problem is solved by stage decomposition. The approach is implemented in the computer tool FSOpt (Flow sheet Superstructure Optimization) FSOpt provides a flexible environment for the modelling of the unit operations and the generation of superstructures and algorithms for the translation of the superstructure into non-linear programming models. The approach is applied to two case studies, the hydroformylation of dodec-1-ene and the separation of an azeotropic mixture of water and formic acid.

[1]  E. Pistikopoulos,et al.  Novel approach for optimal process design under uncertainty , 1995 .

[2]  Efstratios N. Pistikopoulos,et al.  Global superstructure optimisation of red blood cell production in a parallelised hollow fibre bioreactor , 2014, Comput. Chem. Eng..

[3]  Sebastian Engell,et al.  A hybrid algorithm for solving two-stage stochastic integer problems by combining evolutionary algorithms and mathematical programming methods , 2005 .

[4]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[5]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[6]  Ignacio E. Grossmann,et al.  Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty , 2006, Comput. Chem. Eng..

[7]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[8]  I. Grossmann,et al.  ADVANCES IN MATHEMATICAL PROGRAMMING FOR THE SYNTHESIS OF PROCESS SYSTEMS , 1999 .

[9]  Arnold Neumaier,et al.  Chemical Process Modeling in Modelica , 2012 .

[10]  Nilay Shah,et al.  A superstructure optimization approach for water network synthesis with membrane separation-based regenerators , 2012, Comput. Chem. Eng..

[11]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[12]  Ignacio E. Grossmann,et al.  Mathematical programming approaches to the synthesis of chemical process systems , 1999 .

[13]  Jochen Strube,et al.  Design and optimization of a hybrid distillation/melt crystallization process , 2008 .

[14]  Gürkan Sin,et al.  Systematic network synthesis and design: Problem formulation, superstructure generation, data management and solution , 2015, Comput. Chem. Eng..

[15]  Alexander W. Dowling,et al.  Equation-oriented Optimization of Cryogenic Systems for Coal Oxycombustion Power Generation☆ , 2014 .

[16]  Ignacio E. Grossmann,et al.  Superstructure optimization of the olefin separation process , 2003 .

[17]  Sebastian Engell,et al.  Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty , 2013, Comput. Chem. Eng..

[18]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[19]  Wolfgang Marquardt,et al.  Efficient optimization-based design for the separation of heterogeneous azeotropic mixtures , 2015, Comput. Chem. Eng..

[20]  Iqbal M. Mujtaba,et al.  Optimisation of design and operation of MSF desalination process using MINLP technique in gPROMS , 2008 .

[21]  Y. Brunsch,et al.  Temperaturgesteuertes Katalysatorrecycling für die homogen katalysierte Hydroformylierung langkettiger Alkene , 2013 .

[22]  Sebastian Engell,et al.  Stochastic integer programming in chemical batch scheduling: evolution strategies vs. exact algorithms , 2006 .

[23]  David L. Woodruff,et al.  Pyomo: modeling and solving mathematical programs in Python , 2011, Math. Program. Comput..

[24]  Achim Kienle,et al.  Towards global optimization of combined distillation-crystallization processes for the separation of closely boiling mixtures , 2011 .

[25]  Feelly Ruether,et al.  Separation of the isomeric long-chain aldehydes dodecanal/2-methylundecanal via layer melt crystallization , 2012 .

[26]  Lorenz T. Biegler,et al.  Optimal process design with model parameter uncertainty and process variability , 2003 .

[27]  Jon C. Helton,et al.  A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling , 2005, Reliab. Eng. Syst. Saf..

[28]  Alexander W. Dowling,et al.  A framework for efficient large scale equation-oriented flowsheet optimization , 2015, Comput. Chem. Eng..

[29]  Kai Sundmacher,et al.  Simultaneous design of the optimal reaction and process concept for multiphase systems , 2014 .

[30]  R. Sargent,et al.  A general algorithm for short-term scheduling of batch operations */I , 1993 .

[31]  Donald R. Woods,et al.  Rules of Thumb in Engineering Practice , 2007 .

[32]  Jean-Paul Watson,et al.  Block-oriented modeling of superstructure optimization problems , 2013, Comput. Chem. Eng..

[33]  Jakob Mauss Modelica Instance Creation , 2005 .

[34]  Jochen Steimel,et al.  A framework for the modeling and optimization of process superstructures under uncertainty , 2014 .

[35]  Sebastian Engell,et al.  Risk conscious solution of planning problems under uncertainty by hybrid multi-objective evolutionary algorithms , 2011, Comput. Chem. Eng..

[36]  Efstratios N. Pistikopoulos,et al.  A parametric MINLP algorithm for process synthesis problems under uncertainty , 1996 .

[37]  Wolfgang Marquardt,et al.  A unifying framework for optimization-based design of integrated reaction-separation processes , 2015, Comput. Chem. Eng..

[38]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[39]  Sebastian Engell,et al.  A hybrid evolutionary algorithm for solving two-stage stochastic integer programs in chemical batch scheduling , 2007, Comput. Chem. Eng..

[40]  Georg Wellinghoff,et al.  Schmelzkristallisation – theoretische Voraussetzungen und technische Grenzen , 1991 .

[41]  Arno Behr,et al.  Thermoregulated liquid/liquid catalyst separation and recycling , 2006 .

[42]  Ignacio E. Grossmann,et al.  Optimum design of chemical plants with uncertain parameters , 1978 .

[43]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .