Silver-Doped Zeolitic Imidazolate Framework (Ag@ZIF-8): An Efficient Electrocatalyst for CO2 Conversion to Syngas

To enable the reuse of carbon dioxide (CO2), electrocatalytic reduction of CO2 (CO2RR) into syngas with a controllable H2/CO ratio is considered a cost-effective and intriguing approach. Here, a number of silver (Ag)-doped, zeolitic imidazole framework composites were prepared by a facile method. The outcomes demonstrate that CO2 electroreduction on Ag-doped ZIF-8 catalysts produces just CO and H2, without having any liquid fuel, resulting in a total faradaic efficiency approaching 100%. The most optimal Ag-Zn-ZIF-8 (10% Ag, 90% Zn) demonstrates good selectivity for syngas (CO and H2) that can be easily adjusted from 3:1 to 1:3 (H2/CO) by changing the applied voltage during the CO2 conversion process.

[1]  L. Wilson,et al.  Electrocatalytic Oxidation of Nitrophenols via Ag Nanoparticles Supported on Citric-Acid-Modified Polyaniline , 2023, Catalysts.

[2]  Muhammad Usman,et al.  Bimetallic Metal-Organic Framework Derived Nanocatalyst for CO2 Fixation through Benzimidazole Formation and Methanation of CO2 , 2023, Catalysts.

[3]  Z. Yamani,et al.  Electrochemical Reduction of CO2 to C1 and C2 Liquid Products on Copper-Decorated Nitrogen-Doped Carbon Nanosheets , 2022, Nanomaterials.

[4]  Thomas Burdyny,et al.  Energy comparison of sequential and integrated CO2 capture and electrochemical conversion , 2022, Nature Communications.

[5]  S. Jazayeri,et al.  A detail study of a RCCI engine performance fueled with diesel fuel and natural gas blended with syngas with different compositions , 2022, International Journal of Hydrogen Energy.

[6]  Syed Abbas Ali Shah,et al.  A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification , 2022, Journal of Environmental Chemical Engineering.

[7]  Ali Seifitokaldani,et al.  CO2 Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts , 2022, ACS catalysis.

[8]  A. Galadima,et al.  Advanced Strategies in Metal‐Organic Frameworks for CO2 Capture and Separation , 2021, Chemical record.

[9]  S. Iglauer,et al.  Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review , 2021 .

[10]  H. Ullah,et al.  Electrochemical Reduction of CO2: A Review of Cobalt Based Catalysts for Carbon Dioxide Conversion to Fuels , 2021, Nanomaterials.

[11]  K. Kerman,et al.  Capture and electroreduction of CO2 using highly efficient bimetallic Pd–Ag aerogels paired with carbon nanotubes , 2021, Journal of Materials Chemistry A.

[12]  N. Iqbal,et al.  Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction , 2021 .

[13]  Z. Yamani,et al.  Trends and Prospects in UiO‐66 Metal‐Organic Framework for CO2 Capture, Separation, and Conversion , 2021, Chemical record.

[14]  Y. Liu,et al.  Silver-decorated ZIF-8 derived ZnO concave nanocubes for efficient photooxidation-adsorption of iodide anions: An in-depth experimental and theoretical investigation , 2021 .

[15]  H. Kraatz,et al.  Electrografting amines onto silver nanoparticle-modified electrodes for electroreduction of CO2 at low overpotential , 2021 .

[16]  K. Wu,et al.  Decoration of silver nanoparticles on nitrogen-doped nanoporous carbon derived from zeolitic imidazole framework-8 (ZIF-8) via in situ auto-reduction , 2021, RSC advances.

[17]  M. Siddiqui,et al.  Confined growth and dispersion of FeP nanoparticles in highly mesoporous carbons as efficient electrocatalysts for the hydrogen evolution reaction , 2021 .

[18]  Danielle A. Salvatore,et al.  An industrial perspective on catalysts for low-temperature CO2 electrolysis , 2021, Nature Nanotechnology.

[19]  Zhenmin Cheng,et al.  High-density Ag nanosheets for selective electrochemical CO2 reduction to CO , 2020, Nanotechnology.

[20]  F. Shehzad,et al.  CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons , 2020 .

[21]  Md. Eyasin Arafat,et al.  Defect-engineering a metal–organic framework for CO2 fixation in the synthesis of bioactive oxazolidinones , 2020 .

[22]  Bassem A. Al-Maythalony,et al.  High gas permselectivity in ZIF‐302/polyimide self‐consistent mixed‐matrix membrane , 2020, Journal of Applied Polymer Science.

[23]  Juan-Yu Yang,et al.  Porosity-Induced High Selectivity for CO2 Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts , 2019, ACS Catalysis.

[24]  Nannan Sun,et al.  Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO2 in mild conditions. , 2019, ACS applied materials & interfaces.

[25]  Linbing Sun,et al.  Fabrication of Photothermal Silver Nanocubes/ZIF-8 Composites for Visible-Light-Regulated Release of Propylene. , 2019, ACS applied materials & interfaces.

[26]  B. Hwang,et al.  Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction , 2019, Joule.

[27]  Zhichuan J. Xu,et al.  Boosting Electrochemical CO2 Reduction on Metal-Organic Frameworks via Ligand Doping. , 2019, Angewandte Chemie.

[28]  Yuanxing Wang,et al.  Copper–Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide , 2019, Nanomaterials.

[29]  X. Bao,et al.  Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs , 2018, Nano Energy.

[30]  Pengfei Hou,et al.  Zinc Imidazolate Metal-Organic Frameworks (ZIF-8) for Electrochemical Reduction of CO2 to CO. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  Jitendra K. Pandey,et al.  Challenges and opportunities for the application of biofuel , 2017 .

[32]  X. Bao,et al.  Boosting CO2 electroreduction over layered zeolitic imidazolate frameworks decorated with Ag2O nanoparticles , 2017 .

[33]  Christopher A. Trickett,et al.  The chemistry of metal–organic frameworks for CO 2 capture, regeneration and conversion , 2017 .

[34]  R. Amal,et al.  Highly Selective Conversion of CO2 to CO Achieved by a Three-Dimensional Porous Silver Electrocatalyst , 2017 .

[35]  Curtis P. Berlinguette,et al.  Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells , 2016 .

[36]  T. Yamada,et al.  Silver-catalyzed carboxylation. , 2016, Chemical Society reviews.

[37]  W. Ahn,et al.  ZIF-8: A comparison of synthesis methods , 2015 .

[38]  Paul J. A. Kenis,et al.  Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer , 2015 .

[39]  Suojiang Zhang,et al.  Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides , 2015, Science China Chemistry.

[40]  Sai Gu,et al.  A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas , 2014 .

[41]  H. Wayment-Steele,et al.  Surface and Stability Characterization of a Nanoporous ZIF-8 Thin Film , 2014 .

[42]  Etosha R. Cave,et al.  Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[43]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[44]  Z. Lai,et al.  Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. , 2011, Chemical communications.

[45]  Yoshio Hori,et al.  Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide , 2003 .

[46]  Makiko Kato,et al.  Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110) , 1997 .