GAUSSIAN CHARACTERIZATION OF UNIFORM DONSKER CLASSES OF FUNCTIONS

It is proved that, for classes of functions Y satisfying some measurability, the empirical processes indexed by F and based on P E 9(S) satisfy the central limit theorem uniformly in P E 9W(S) if and only if the P-Brownian bridges GOp indexed by Y are sample bounded and pp uniformly continuous uniformly in P E 9(S). Uniform exponential bounds for empirical processes indexed by universal bounded Donsker and uniform Donsker classes of functions are also obtained.

[1]  Boris Mityagin,et al.  APPROXIMATE DIMENSION AND BASES IN NUCLEAR SPACES , 1961 .

[2]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[3]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[4]  Michael B. Marcus,et al.  Central limit theorems for C(S)-valued random variables , 1975 .

[5]  G. Pisier,et al.  The Law of Large Numbers and the Central Limit Theorem in Banach Spaces , 1976 .

[6]  J. Zinn A Note on the Central Limit Theorem in Banach Spaces , 1977 .

[7]  V. Sazonov Normal Approximation: Some Recent Advances , 1981 .

[8]  D. Pollard Limit theorems for empirical processes , 1981 .

[9]  G. Pisier,et al.  Random Fourier Series with Applications to Harmonic Analysis. , 1981 .

[10]  D. Aldous The Central Limit Theorem for Real and Banach Valued Random Variables , 1981 .

[11]  R. Dudley A course on empirical processes , 1984 .

[12]  G. Pisier Remarques sur les classes de Vapnik-Cervonenkis , 1984 .

[13]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[14]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[15]  Wolfgang L. Wendland,et al.  Singularities and Constructive Methods for Their Treatment , 1985 .

[16]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[17]  E. Giné,et al.  Lectures on the central limit theorem for empirical processes , 1986 .

[18]  R. Beran,et al.  STOCHASTIC ESTIMATION AND TESTING , 1987 .

[19]  R. Dudley Universal Donsker Classes and Metric Entropy , 1987 .

[20]  J. Wellner,et al.  UNIFORMITY IN P OF SOME LIMIT THEOREMS FOR EMPIRICAL MEASURES AND PROCESSES , 1987 .

[21]  V. Dobric,et al.  The central limit theorem for stochastic processes II , 1988 .

[22]  A Stochastic Minimum Distance Test for Multivariate Parametric Models , 1989 .

[23]  E. Giné,et al.  Bootstrapping General Empirical Measures , 1990 .

[24]  J. Zinn Universal Donsker Classes and Type 2 , 1990 .

[25]  J. Hoffmann-jorgensen Stochastic processes on Polish spaces , 1991 .