Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions

[1] Against a backdrop of intensive exploration of the Martian surface environment, intended to lead to human exploration, some aspects of the modern climate and the meteorology of Mars remain relatively unexplored. In particular, there is a need for detailed measurements of the vertical profiles of atmospheric temperature, water vapor, dust, and condensates to understand the intricately related processes upon which the surface conditions, and those encountered during descent by landers, depend. The most important of these missing data are accurate and extensive temperature measurements with high vertical resolution. The Mars Climate Sounder experiment on the 2005 Mars Reconnaissance Orbiter, described here, is the latest attempt to characterize the Martian atmosphere with the sort of coverage and precision achieved by terrestrial weather satellites. If successful, it is expected to lead to corresponding improvements in our understanding of meteorological phenomena and to enable improved general circulation models of the Martian atmosphere for climate studies on a range of timescales.

[1]  P. Christensen,et al.  Exposed Water Ice Discovered near the South Pole of Mars , 2002, Science.

[2]  Michael D. Smith,et al.  Comparison of atmospheric temperatures obtained through infrared sounding and radio occultation by Mars Global Surveyor , 2004 .

[3]  M. Malin,et al.  Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season , 2002 .

[4]  David A. Paige,et al.  Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region , 1994 .

[5]  M C Malin,et al.  Observational Evidence for an Active Surface Reservoir of Solid Carbon Dioxide on Mars , 2001, Science.

[6]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[7]  C. Weitz,et al.  Sand dune materials and polar layered deposits on Mars , 1989 .

[8]  D. W. Davies,et al.  Mars: Water vapor observations from the Viking orbiters , 1977 .

[9]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[10]  Gary John Hawkins,et al.  Design and fabrication of infrared filters for remote sounding instrumentation , 1994, Other Conferences.

[11]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[12]  David Crisp,et al.  The planetary fourier spectrometer (PFS) onboard the European Venus Express mission , 2005 .

[13]  Susan K. McMahon,et al.  Overview of the Planetary Data System , 1996 .

[14]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[15]  D. Diner,et al.  Remote sensing of the atmosphere of Mars using infrared pressure modulation and filter radiometry. , 1986, Applied optics.

[16]  H. Kieffer,et al.  Observational Evidence for an Active Surface Reservoir of Solid Carbon Dioxide on Mars , 2001 .

[17]  J. Laskar,et al.  The chaotic obliquity of the planets , 1993, Nature.

[18]  David P. Hinson,et al.  Validation of martian meteorological data assimilation for MGS/TES using radio occultation measurements , 2006 .

[19]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[20]  M. Chahine Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters , 1970 .

[21]  E. W. Jones,et al.  THERMOPILE DETECTOR ARRAYS FOR SPACE SCIENCE APPLICATIONS , 2004 .

[22]  Fredric W. Taylor,et al.  Remote sounding from artificial satellites and space probes of the atmospheres of the Earth and the planets , 1973 .

[23]  Richard W. Zurek,et al.  Interannual variability of planet-encircling dust storms on Mars , 1993 .

[24]  Marc C. Foote,et al.  Space science applications of thermopile detector arrays , 2003, SPIE OPTO.

[25]  J. Bandfield,et al.  Multiple emission angle surface–atmosphere separations of thermal emission spectrometer data , 2001 .

[26]  P. Orleanski,et al.  The Planetary Fourier Spectrometer ( PFS ) , 2005 .

[27]  S. Smrekar,et al.  An overview of the Mars Reconnaissance Orbiter (MRO) science mission , 2007 .

[28]  J. Schofield,et al.  Results of the Mars Pathfinder atmospheric structure investigation , 1999 .

[29]  L. Montabone,et al.  Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations , 2005 .

[30]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[31]  M. Collins,et al.  Data assimilation with a Martian atmospheric GCM: An example using thermal data , 1997 .

[32]  P. Ade,et al.  Investigation of dielectric spaced resonant mesh filter designs for PMIRR , 1993 .

[33]  Michael D. Smith,et al.  Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity , 2006 .

[34]  Stephen R. Lewis,et al.  Atmospheric tides in a Mars general circulation model with data assimilation , 2005 .

[35]  C. Leovy,et al.  Weather and climate on Mars , 2001, Nature.

[36]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[37]  Eric W. Jones,et al.  Uncooled thermopile infrared detector linear arrays with detectivity greater than 10/sup 9/ cmHz/sup 1/2//W , 1998 .

[38]  P. Drossart,et al.  Perennial water ice identified in the south polar cap of Mars , 2004, Nature.

[39]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[40]  S. Lewis,et al.  An operational data assimilation scheme for the martian atmosphere , 1995 .

[41]  F. Palluconi,et al.  The climate of the martian polar cap , 1979 .

[42]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[43]  A. Ingersoll,et al.  Annual Heat Balance of Martian Polar Caps: Viking Observations , 1985, Science.

[44]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .

[45]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[46]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[47]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[48]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[49]  C. B. Farmer,et al.  Global seasonal variation of water vapor on Mars and the implications for permafrost , 1979 .

[50]  J. Schofield,et al.  Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer , 1992 .

[51]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[52]  R. M. Henry,et al.  Meteorological results from the surface of Mars: Viking 1 and 2 , 1977 .

[53]  R. Haberle,et al.  Year‐to‐year instability of the Mars south polar cap , 1990 .

[54]  J. Tillman Mars global atmospheric oscillations - Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms , 1988 .

[55]  J. Schofield,et al.  Atmospheric temperature sounding on Mars, and the climate sounder on the 2005 reconnaissance orbiter , 2006 .

[56]  John C. Pearl,et al.  One Martian year of atmospheric observations by the thermal emission spectrometer , 2001 .

[57]  M. Collins,et al.  Martian atmospheric data assimilation with a simplified general circulation model: orbiter and lander networks , 1996 .

[58]  W. R. Ward Large-Scale Variations in the Obliquity of Mars , 1973, Science.