Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features

In this paper, we utilize micro-Raman spectroscopy to measure temperature and stress in state-of-the-art AlGaN/GaN HEMTs. A rigorous discussion on the physical accuracy, precision, and precautions for diverse Raman thermometry methods is developed. Thermometry techniques utilizing shifts in a single Raman Stokes peak position underpredict the channel temperature due to induction of operational thermoelastic stress in operating devices. Utilizing the change in phonon linewidth by employing a proper reference condition gives true temperature results. Making use of frequency shifts in both the E2(high) and A1(LO) phonon modes offers accurate and time-efficient means to determine the state of temperature and thermal stress in operating AlGaN/GaN HEMTs presuming that linear relations between phonon frequencies and temperature/stress are well determined. Useful applications of this method such as monitoring stress in GaN wafers between fabrication steps and Raman thermography on AlGaN/GaN HEMTs are demonstrated.

[1]  T. Martin,et al.  Thermal Properties and Reliability of GaN Microelectronics: Sub-Micron Spatial and Nanosecond Time Resolution Thermography , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[2]  Sangmin Lee,et al.  Status of GaN HEMT performance and reliability , 2008, SPIE OPTO.

[3]  Hiroshi Ogawa,et al.  Temperature dependence of Raman scattering in hexagonal indium nitride films , 2000 .

[4]  H. Morkoc,et al.  Thermal Properties of AlGaN/GaN HFETs on Bulk GaN Substrates , 2012, IEEE Electron Device Letters.

[5]  G. Stemme,et al.  Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors , 1997 .

[6]  D. Green,et al.  Development of a Versatile Physics-Based Finite-Element Model of an AlGaN/GaN HEMT Capable of Accommodating Process and Epitaxy Variations and Calibrated Using Multiple DC Parameters , 2011, IEEE Transactions on Electron Devices.

[7]  Sven Einfeldt,et al.  Temperature dependence of the thermal expansion of GaN , 2005 .

[8]  E. Bourhis,et al.  Measurement of thin film elastic constants by X-ray diffraction , 2004 .

[9]  A. Christensen Multiscale modeling of thermal transport in gallium nitride microelectronics , 2009 .

[10]  Alexander A. Balandin,et al.  The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs , 2003 .

[11]  M. Kuball,et al.  Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy , 2002, IEEE Electron Device Letters.

[12]  J. Bluet,et al.  Temperature dependent degradation modes in AlGaN/GaN HEMTs , 2010, The 5th European Microwave Integrated Circuits Conference.

[13]  E. A. Burgemeister,et al.  Thermal conductivity and electrical properties of 6H silicon carbide , 1979 .

[14]  Alexander A. Balandin,et al.  Temperature dependence of thermal conductivity of AlxGa1−xN thin films measured by the differential 3ω technique , 2004 .

[15]  M. Grimsditch,et al.  The elastic constants of silicon carbide: A Brillouin-scattering study of 4H and 6H SiC single crystals , 1997 .

[16]  B. Bernstein Elastic Constants of Synthetic Sapphire at 27°C , 1963 .

[17]  Friedhelm Bechstedt,et al.  Properties of strained wurtzite GaN and AlN: Ab initio studies , 2002 .

[18]  J. B. Wachtman,et al.  Linear Thermal Expansion of Aluminum Oxide and Thorium Oxide from 100° to 1100°K , 1962 .

[19]  Martin Kuball,et al.  Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure , 2010, IEEE Electron Device Letters.

[20]  J. Massies,et al.  Phonon deformation potentials in hexagonal GaN , 2004 .

[21]  E. Gmelin,et al.  REVIEW ARTICLE: Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures , 1999 .

[22]  Philip M Fabis Reliability of radio frequency/microwave power packages: the effects of component materials and assembly processes , 1999 .

[23]  C. T. Foxon,et al.  Lattice parameters of gallium nitride , 1996 .

[24]  Mark Bush,et al.  Effects of deposition temperature on the mechanical and physical properties of silicon nitride thin films , 2005 .

[25]  A. N. Smirnov,et al.  Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H–SiC , 1997 .

[26]  T. Beechem,et al.  Micro-Raman thermometry in the presence of complex stresses in GaN devices , 2008 .

[27]  Martin Kuball,et al.  Simultaneous measurement of temperature and thermal stress in AlGaN/GaN high electron mobility transistors using Raman scattering spectroscopy , 2009 .

[28]  R. Bradt,et al.  Thermal expansion of the hexagonal (6H) polytype of silicon carbide , 1986 .

[29]  F. Bertoluzza,et al.  Three-dimensional finite-element thermal simulation of GaN-based HEMTs , 2009, Microelectron. Reliab..

[30]  Izabella Grzegory,et al.  Elastic constants of gallium nitride , 1996 .

[31]  T. F. Retajczyk,et al.  Elastic stiffness and thermal expansion coefficients of various refractory silicides and silicon nitride films , 1980 .