A Geometric Construction of Multivariate Sinc Functions

We present a geometric framework for explicit derivation of multivariate sampling functions (sinc) on multidimensional lattices. The approach leads to a generalization of the link between sinc functions and the Lagrange interpolation in the multivariate setting. Our geometric approach also provides a frequency partition of the spectrum that leads to a nonseparable extension of the 1-D Shannon (sinc) wavelets to the multivariate setting. Moreover, we propose a generalization of the Lanczos window function that provides a practical and unbiased approach for signal reconstruction on sampling lattices. While this framework is general for lattices of any dimension, we specifically characterize all 2-D and 3-D lattices and show the detailed derivations for 2-D hexagonal body-centered cubic (BCC) and face-centered cubic (FCC) lattices. Both visual and numerical comparisons validate the theoretical expectations about superiority of the BCC and FCC lattices over the commonly used Cartesian lattice.

[1]  Hans R. Künsch,et al.  Optimal lattices for sampling , 2005, IEEE Transactions on Information Theory.

[2]  Dong Wei,et al.  A new approach to the design of multidimensional nonseparable two-channel orthonormal filterbanks and wavelets , 2000, IEEE Signal Processing Letters.

[3]  M. Vetterli,et al.  From Lagrange to Shannon... and back: another look at sampling [DSP Education] , 2009, IEEE Signal Processing Magazine.

[4]  Aydin Akan,et al.  Sampling and reconstruction of non-bandlimited signals using Slepian functions , 2008, 2008 16th European Signal Processing Conference.

[5]  Alexei A. Maradudin,et al.  Space groups for solid state scientists , 1979 .

[6]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[7]  Alireza Entezari,et al.  Optimal sampling lattices and trivariate box splines , 2007 .

[8]  Jörg Peters,et al.  Box Spline Reconstruction On The Face-Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[10]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[11]  John H. Marsh,et al.  Monolithic integration via a universal damage enhanced quantum-well intermixing technique , 1998 .

[12]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[13]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[14]  Rik Van de Walle,et al.  Accepted for Publication in Ieee Transactions on Image Processing Hex-splines: a Novel Spline Family for Hexagonal Lattices , 2022 .

[15]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[16]  Manojkumar Saranathan,et al.  ANTHEM: anatomically tailored hexagonal MRI. , 2007, Magnetic resonance imaging.

[17]  Peter McMullen,et al.  SPACE TILING ZONOTOPES , 1975 .

[18]  E. Meijering A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.

[19]  Masaaki Sugihara,et al.  De-Sinc numerical methods , 2009, SNC '09.

[20]  Byoungseon Choi A fundamental theorem of algebra, spectral factorization, and stability of two-dimensional systems , 2003, IEEE Trans. Signal Process..

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  F. Meyer,et al.  Mathematical morphology: from two dimensions to three dimensions , 1992 .

[23]  Jayanthi Sivaswamy,et al.  Hexagonal Image Processing: A Practical Approach , 2014, Advances in Pattern Recognition.

[24]  Robert M. Erdahl,et al.  Zonotopes, Dicings, and Voronoi's Conjecture on Parallelohedra , 1999, Eur. J. Comb..

[25]  Minh N. Do,et al.  A Computable Fourier Condition Generating Alias-Free Sampling Lattices , 2009, IEEE Transactions on Signal Processing.

[26]  Christian Roux,et al.  Discrete Topology of (An*) Optimal Sampling Grids. Interest in Image Processing and Visualization , 2005, Journal of Mathematical Imaging and Vision.

[27]  Hamid Behmard,et al.  Sampling of Bandlimited Functions on Unions of Shifted Lattices , 2002 .

[28]  Valerio Lucarini,et al.  Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes , 2008, ArXiv.

[29]  Yurii Lyubarskii,et al.  Complete interpolating sequences for Fourier transforms supported by convex symmetric polygons , 2000 .

[30]  Ramsay Dyer,et al.  From Sphere Packing to the Theory of Optimal Lattice Sampling , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[31]  Alireza Entezari,et al.  Voronoi Splines , 2010, IEEE Transactions on Signal Processing.

[32]  James F. Blinn Jim Blinn's corner: dirty pixels , 1998 .

[33]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[34]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[35]  C. D. Boor,et al.  Fourier analysis of the approximation power of principal shift-invariant spaces , 1992 .

[36]  Igor Kluvánek,et al.  Sampling Theorem in Abstract Harmonic Analysis , 1965 .

[37]  Eric Dubois,et al.  Multidimensional windows over arbitrary lattices and their application to FIR filter design , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[38]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[39]  E. Meijering,et al.  A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.

[40]  J. R. Higgins Sampling theory in Fourier and signal analysis : foundations , 1996 .

[41]  Cornelius Lanczos,et al.  Discourse on Fourier series , 1966 .

[42]  Frank Stenger,et al.  Polynomial function and derivative approximation of Sinc data , 2009, J. Complex..

[43]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[44]  Michel Deza,et al.  Voronoĭ's conjecture and space tiling zonotopes , 2004 .

[45]  A.K. Krishnamurthy,et al.  Multidimensional digital signal processing , 1985, Proceedings of the IEEE.

[46]  Peer Stelldinger,et al.  Topology Preserving Marching Cubes-like Algorithms on the Face-Centered Cubic Grid , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).

[47]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[48]  Michael M. Kazhdan,et al.  Reconstruction of solid models from oriented point sets , 2005, SGP '05.

[49]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[50]  M. Senechal Quasicrystals and geometry , 1995 .

[51]  N. Sivakumar,et al.  Nonuniform Sampling and Recovery of Multidimensional Bandlimited Functions by Gaussian Radial-Basis Functions , 2009 .

[52]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[53]  Marek A. Kowalski,et al.  Selected topics in approximation and computation , 1995 .

[54]  Dimitri Van De Ville,et al.  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.