Silver ionic compounds as a source of metal carriers in the gas phase

[1]  P. Swiderek,et al.  Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies , 2022, Coordination Chemistry Reviews.

[2]  I. Szymańska,et al.  Copper(II) Perfluorinated Carboxylate Complexes with Small Aliphatic Amines as Universal Precursors for Nanomaterial Fabrication , 2021, Materials.

[3]  Raquel P. Herrera,et al.  Synthesis of New Thiourea-Metal Complexes with Promising Anticancer Properties , 2021, Molecules.

[4]  Lin Wang,et al.  Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities , 2021, Scientific Reports.

[5]  Kuldip Singh,et al.  A dithiacyclam-coordinated silver(I) polymer with anti-cancer stem cell activity. , 2021, Dalton transactions.

[6]  Libao Chen,et al.  A high-performance flexible aqueous silver–zinc rechargeable battery based on AgNP/CNT-graphite paper and ZnNF-graphite paper , 2021 .

[7]  I. Utke,et al.  Vacuum versus ambient pressure inert gas thermogravimetry: a study of silver carboxylates , 2021, Journal of Thermal Analysis and Calorimetry.

[8]  Meng Li,et al.  Recent Advances in Silver‐Catalyzed Transformations of Electronically Unbiased Alkenes and Alkynes , 2020 .

[9]  Kui Zhang,et al.  Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries , 2020 .

[10]  Md Abdus Subhan,et al.  Enhancing the Performance of Dye Sensitized Solar Cells Using Silver Nanoparticles Modified Photoanode , 2020, Molecules.

[11]  T. Edwards,et al.  High-Purity Copper Structures from a Perfluorinated Copper Carboxylate Using Focused Electron Beam Induced Deposition and Post-Purification , 2020, ACS Applied Electronic Materials.

[12]  Jing Feng,et al.  Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles , 2020 .

[13]  Quanli Li,et al.  The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry , 2020, International journal of nanomedicine.

[14]  Bing Han,et al.  Effects of silver nanoparticle on electrochemical performances of poly(o-phenylenediamine)/Ag hybrid composite as anode of lithium-ion batteries , 2020, Journal of Solid State Electrochemistry.

[15]  D. Paley,et al.  Silver(II) and Silver(III) Intermediates in Alkene Aziridination with a Dinuclear Silver(I) Nitrene Transfer Catalyst , 2020 .

[16]  Weidong Huang,et al.  Synergistic Antifungal Activity of Green Synthesized Silver Nanoparticles and Epoxiconazole against Setosphaeria turcica , 2020 .

[17]  N. Slepičková Kasálková,et al.  Methods of Gold and Silver Nanoparticles Preparation , 2019, Materials.

[18]  R. Leturcq,et al.  Large-Scale Deposition and Growth Mechanism of Silver Nanoparticles by Plasma-Enhanced Atomic Layer Deposition , 2019, The Journal of Physical Chemistry C.

[19]  A. Loiseau,et al.  Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing , 2019, Biosensors.

[20]  L. Radko,et al.  Silver(I) Complexes of the Pharmaceutical Agents Metronidazole and 4-Hydroxymethylpyridine: Comparison of Cytotoxic Profile for Potential Clinical Application , 2019, Molecules.

[21]  M. Quevedo-López,et al.  Enhanced reproducibility of planar perovskite solar cells by fullerene doping with silver nanoparticles , 2018, Journal of Applied Physics.

[22]  M. V. Puydinger dos Santos,et al.  A novel copper precursor for electron beam induced deposition , 2018, Beilstein journal of nanotechnology.

[23]  I. Utke,et al.  Towards the third dimension in direct electron beam writing of silver , 2018, Beilstein journal of nanotechnology.

[24]  I. Utke,et al.  Gas-assisted silver deposition with a focused electron beam , 2018, Beilstein journal of nanotechnology.

[25]  S. D. Astuti,et al.  An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans , 2017 .

[26]  M. V. Puydinger dos Santos,et al.  Direct Electron Beam Writing of Silver-Based Nanostructures. , 2017, ACS applied materials & interfaces.

[27]  M. Ritala,et al.  Studies on Thermal Atomic Layer Deposition of Silver Thin Films , 2017 .

[28]  F. Favier,et al.  Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors , 2017, Journal of Nanoparticle Research.

[29]  Tikam Chand Dakal,et al.  Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles , 2016, Frontiers in microbiology.

[30]  Xianlong Zhang,et al.  Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver , 2016, Scientific Reports.

[31]  T. Yamada,et al.  Silver-catalyzed carboxylation. , 2016, Chemical Society reviews.

[32]  Rodrigo Esparza,et al.  Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. , 2016, Journal of materials chemistry. B.

[33]  S. Naseem,et al.  Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes , 2016, Nanomaterials.

[34]  U. Schubert,et al.  Antibacterial effect of silver (I) carbohydrate complexes on oral pathogenic key species in vitro , 2016, BMC Oral Health.

[35]  R. Turner,et al.  Silver Oxynitrate, an Unexplored Silver Compound with Antimicrobial and Antibiofilm Activity , 2015, Antimicrobial Agents and Chemotherapy.

[36]  H. Schmidbaur,et al.  Argentophilic interactions. , 2015, Angewandte Chemie.

[37]  I. Szymańska Influence of the gas phase composition on the properties of bimetallic Ag/Cu nanomaterials obtained via chemical vapor deposition , 2013 .

[38]  E. Talik,et al.  Deposition of Thin Copper Layers using Copper(II) Carboxylate Complexes with tert-Butylamine as New CVD Precursors† , 2013 .

[39]  J. Fransaer,et al.  Silver‐Containing Ionic Liquids with Alkylamine Ligands , 2013 .

[40]  I. Szymańska Gaseous phase studies of new copper(II) carboxylate complexes with tert-butylamine as potential precursors for chemical vapor deposition (CVD) , 2013 .

[41]  E. Szłyk,et al.  Thermal decomposition of some silver(I) carboxylates under nitrogen atmosphere , 2013, Journal of Thermal Analysis and Calorimetry.

[42]  R. O'hair,et al.  Forming trifluoromethylmetallates: competition between decarboxylation and C-F bond activation of group 11 trifluoroacetate complexes, [CF3CO2ML]-. , 2012, Dalton transactions.

[43]  A. Mahmoudi,et al.  Wet Chemical Synthesis of Oleylamine-Capped Silver Nanoparticles by a Fast and Facile Reproducible Method , 2011 .

[44]  D. Velayutham,et al.  Products formed at intermediate stages of electrochemical perfluorination of propionyl and n-butyryl chlorides. Further evidence in support of NiF3 mediated free radical pathway , 2011 .

[45]  S. Romani,et al.  Liquid injection atomic layer deposition of silver nanoparticles , 2010, Nanotechnology.

[46]  A. Jakob,et al.  Disilver(I) Coordination Complexes: Synthesis, Reaction Chemistry, and Their Potential Use in CVD and Spin-Coating Processes for Silver Deposition , 2010 .

[47]  M. A. Malik,et al.  The Aerosol‐Assisted CVD of Silver Films from Single‐Source Precursors , 2009 .

[48]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[49]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[50]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[51]  E. Szłyk,et al.  Thermal and ms studies of silver(I) 2,2-dimethylbutyrate complexes with tertiary phosphines and their application for CVD of silver films , 2007 .

[52]  Mari Yamamoto,et al.  Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[53]  A. Jakob,et al.  Phosphane/phosphite silver(I) carboxylates as CVD precursors , 2006 .

[54]  E. Szłyk,et al.  Copper(I), silver(I) and gold(I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic films , 2005 .

[55]  K. W. Seo,et al.  Preparation of silver thin films using liquid-phase precursors by metal organic chemical vapor deposition and their conversion to silver selenide films by selenium vapor deposition , 2005 .

[56]  E. Szłyk,et al.  Characterization of Silver Trimethylacetate Complexes with Tertiary Phosphines as CVD Precursors of Thin Silver Films , 2005 .

[57]  E. Szłyk,et al.  Chemical Vapour Deposition (CVD) of metallic layers prepared from silver carboxylates complexes with tertiary phosphines , 2005 .

[58]  M. Richert,et al.  Thermal properties of multinuclear Ti(IV) and Zr(IV) carboxylate derivatives characterized using thermal analysis and variable temperature MS and IR methods , 2005 .

[59]  J. Keller The formic acid-trifluoroacetic acid bimolecule. Gas-phase infrared spectrum and computational studies , 2004 .

[60]  H. Chiu,et al.  Adsorption and Decomposition Studies of t-Butylamine, Diethylamine, and Methylethylamine on Si(100)−(2 × 1) , 2004 .

[61]  Mari Yamamoto,et al.  Novel preparation of monodispersed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine , 2003 .

[62]  S. Rhee,et al.  Comparative Study of Cu Precursors for 3D Focused Electron Beam Induced Deposition , 2004 .

[63]  P. Hoffmann,et al.  Focused-electron-beam-induced deposition of freestanding three-dimensional nanostructures of pure coalesced copper crystals , 2002 .

[64]  D. A. Edwards,et al.  Aerosol-assisted chemical vapour deposition (AACVD) of silver films from triorganophosphine adducts of silver carboxylates, including the structure of [Ag(O2CC3F7)(PPh3)2] , 2002 .

[65]  E. Szłyk,et al.  Studies of thermal decomposition process of Ag(I) perfluorinated carboxylates with temperature variable IR and MS , 2001 .

[66]  E. Szłyk,et al.  CVD of AgI Complexes with Tertiary Phosphines and Perfluorinated Carboxylates—A New Class of Silver Precursors , 2001 .

[67]  K. Chi,et al.  MOCVD of Silver Thin Films from the (1,1,1,5,5,5‐Hexafluoro‐2,4‐pentanedionato)‐silver[bis(trimethylsilyl)acetylene] Complex , 2001 .

[68]  F. Weigend,et al.  [{Ag(tBuNH2 )2 }4 ][{Ag(tBuNH2 )(tBuN=CHCH3 )}2 ][Ag12 (CF3 CO2 )14 ]: A Compound with an Ag128+ Cluster Core. , 2000, Angewandte Chemie.

[69]  S. Troyanov,et al.  Silver pivalate as a new volatile precursor for thin film deposition , 1999 .

[70]  E. Szłyk,et al.  Thermal and spectroscopic studies of the Ag(I) salts with fluorinated carboxylic and sulfonic acid residues , 1993 .

[71]  W. Carter,et al.  Chemical vapor deposition of silver films for superconducting wire applications , 1992 .

[72]  W. C. Harris,et al.  Vibrational spectra and conformations of cyclopropylamine , 1979 .

[73]  G. Watt,et al.  The Infrared Spectra and Structure of Methylamine Complexes of Platinum(II) , 1967 .

[74]  H. Taylor,et al.  The Thermal Decomposition of n‐Butylamine , 1942 .