On the spectrum of minimal blocking sets in PG$(2,q)$

Abstract. The spectrum problem for minimal blocking sets means that we wish to determine the possible cardinalities of minimal blocking sets. Besides surveying the results on this problem some new results (or new proofs) are given.

[1]  L. Berardi,et al.  Blocking sets in the projective plane of order four , 1986 .

[2]  Emanuela Ughi On (k, n)-blocking sets which can be obtained as a union of conics , 1988 .

[3]  The non-existence of certain large minimal blocking sets , 1998 .

[4]  Andries E. Brouwer,et al.  Blocking sets in desarguesian projective planes , 1986 .

[5]  Aart Blokhuis,et al.  On the size of a blocking set inPG(2,p) , 1994, Comb..

[6]  A. Bruen,et al.  Baer subplanes and blocking sets , 1970 .

[7]  Aart Blokhuis,et al.  The Number of Directions Determined by a Function f on a Finite Field , 1995, J. Comb. Theory, Ser. A.

[8]  David Pisinger,et al.  Upper Bounds on the Covering Number of Galois-Planes with Small Order , 2001, J. Heuristics.

[9]  Leo Storme,et al.  Small Minimal Blocking Sets in PG(2, q3) , 2002, Eur. J. Comb..

[10]  A. Gács A remark on blocking sets of almost Rédei type , 1997 .

[11]  Largest minimal blocking sets in PG(2,8) , 2003 .

[12]  J. W. P. HIRSCHFELD,et al.  Constructions of Large Arcs and Blocking Sets in Finite Planes , 1991, Eur. J. Comb..

[13]  Minimal blocking sets in finite planes , 1992 .

[14]  Jane W. Di Paola On Minimum Blocking Coalitions in Small Projective Plane Games , 1969 .

[15]  Simeon Ball Partial Unitals and Related Structures in Desarguesian Planes , 1998, Des. Codes Cryptogr..

[16]  Alexander Schrijver,et al.  The Blocking Number of an Affine Space , 1978, J. Comb. Theory, Ser. A.

[17]  Olga Polverino,et al.  On Small Blocking Sets , 1998, Comb..

[18]  András Gács,et al.  On (q + t, t)-Arcs of Type (0, 2, t) , 2003, Des. Codes Cryptogr..

[19]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[20]  P. Scherk On the intersection number of two plane curves , 1977 .

[21]  T Szönyi,et al.  Surveys in Combinatorics, 1997: Some Applications of Algebraic Curves in Finite Geometry and Combinatorics , 1997 .

[22]  Zoltán Füredi,et al.  Matchings and covers in hypergraphs , 1988, Graphs Comb..

[23]  Gábor Korchmáros,et al.  Nuclei of point sets of sizeq+1 contained in the union of two lines inPG(2,q) , 1994, Comb..

[24]  G. Lunardon,et al.  Linear Blocking Sets: A Survey , 2001 .

[25]  Aart Blokhuis,et al.  On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.

[26]  Guglielmo Lunardon,et al.  Blocking Sets and Derivable Partial Spreads , 2001 .

[27]  T. Szonyi Blocking Sets in Desarguesian Affine and Projective Planes , 1997 .

[28]  A. Bruen Blocking Sets in Finite Projective Planes , 1971 .

[29]  Aart Blokhuis,et al.  Blocking sets in Desarguesian planes , 1996 .

[30]  Olga Polverino,et al.  Blocking Sets of Size qt+qt-1+1 , 2000, J. Comb. Theory, Ser. A.

[31]  n2-sets in a projective plane which determine exactly n2+n lines , 1980 .

[32]  Tamás Szonyi,et al.  Note on the existence of large minimal blocking sets in galois planes , 1992, Comb..

[33]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces , 1998 .

[34]  J. Voloch,et al.  Weierstrass Points and Curves Over Finite Fields , 1986 .

[35]  Olga Polverino Small Blocking Sets in PG(2, p3) , 2000 .

[36]  J. Thas Projective Geometry over a Finite Field , 1995 .

[37]  Leo Storme,et al.  Minimal Blocking Sets in PG(2, 8) and Maximal Partial Spreads in PG(3, 8) , 2004, Des. Codes Cryptogr..

[38]  Olga Polverino,et al.  Small minimal blocking sets and complete k-arcs in PG(2, p3) , 1999, Discret. Math..

[39]  Andries E. Brouwer,et al.  Blocking sets in translation planes , 1982 .

[40]  Andries E. Brouwer,et al.  Blocking sets in $PG(2,p)$ for small $p$, and partial spreads in $PG(3,7)$ , 2003 .

[41]  András Gács,et al.  Two Remarks on Blocking Sets and Nuclei in Planes of Prime Order , 1997, Des. Codes Cryptogr..

[42]  Aart Blokhuis,et al.  Blocking Sets of Almost Rédei Type , 1997, J. Comb. Theory, Ser. A.

[43]  András Gács On the number of directions determined by a point set in AG(2, p) , 1999, Discret. Math..

[44]  On minimal blocking sets , 1980 .

[45]  Tamás Szőnyi,et al.  Blocking sets and maximal strong representative systems in finite projective planes , 1991 .

[46]  Antonio Maturo,et al.  The spectrum of minimal blocking sets , 1999, Discret. Math..

[47]  Partitioning the complement of a simplex in PG(e,qd+1) into copies of PG(d,q) , 1988 .

[48]  Finite Geometry and Combinatorics: Large minimal blocking sets, strong representative systems, and partial unitals , 1993 .