The Turing bifurcation in network systems: Collective patterns and single differentiated nodes

[1]  L E Scriven,et al.  Instability and dynamic pattern in cellular networks. , 1971, Journal of theoretical biology.

[2]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[3]  Shui-Nee Chow,et al.  DYNAMICS OF LATTICE DIFFERENTIAL EQUATIONS , 1996 .

[4]  I. Hanski Metapopulation dynamics , 1998, Nature.

[5]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[6]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[7]  Martin Hasler,et al.  Stable Stationary Solutions in Reaction-diffusion Systems Consisting of a 1-d Array of Bistable Cells , 2002, Int. J. Bifurc. Chaos.

[8]  Peter K. Moore,et al.  Network topology and Turing instabilities in small arrays of diffusively coupled reactors , 2004 .

[9]  Peter K. Moore,et al.  Localized patterns in homogeneous networks of diffusively coupled reactors , 2005 .

[10]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[11]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[12]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[13]  Michael Menzinger,et al.  Laplacian spectra as a diagnostic tool for network structure and dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Alexander S Mikhailov,et al.  Diffusion-induced instability and chaos in random oscillator networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Alessandro Vespignani,et al.  Complex networks: Patterns of complexity , 2010 .

[16]  Alexander S. Mikhailov,et al.  Turing patterns in network-organized activator–inhibitor systems , 2008, 0807.1230.

[17]  P. Hövel,et al.  Loss of coherence in dynamical networks: spatial chaos and chimera states. , 2011, Physical review letters.