Universal Homotopy Theories

Abstract Begin with a small category C . The goal of this short note is to point out that there is such a thing as a “universal model category built from C .” We describe applications of this to the study of homotopy colimits, the Dwyer–Kan theory of framings, sheaf theory, and the homotopy theory of schemes.

[1]  Daniel Dugger Replacing model categories with simplicial ones , 2001 .

[2]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[3]  Tibor Beke Sheafifiable homotopy model categories , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Daniel Dugger Combinatorial Model Categories Have Presentations , 2000, math/0007068.

[5]  N. Strickland,et al.  MODEL CATEGORIES (Mathematical Surveys and Monographs 63) , 2000 .

[6]  Vladimir Voevodsky,et al.  A1-homotopy theory of schemes , 1999 .

[7]  S. Schwede Stable homotopical algebra and Γ-spaces , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[9]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[10]  D. M. Kan,et al.  Homotopy Limits, Completions and Localizations , 1987 .

[11]  J. Jardine Simplicial objects in a Grothendieck topos , 1986 .

[12]  R. Thomason Algebraic $K$-theory and etale cohomology , 1985 .

[13]  M. Wodzicki Lecture Notes in Math , 1984 .

[14]  W. Dwyer,et al.  Function complexes in homotopical algebra , 1980 .

[15]  M. Barratt,et al.  Geometric Applications of Homotopy Theory II , 1978 .

[16]  A. K. Bousfield,et al.  Homotopy theory of Γ-spaces, spectra, and bisimplicial sets , 1978 .

[17]  A. K. Bousfield The localization of spectra with respect to homology , 1975 .

[18]  Kenneth S. Brown,et al.  Abstract homotopy theory and generalized sheaf cohomology , 1973 .

[19]  S. Gersten,et al.  Algebraic K-theory as generalized sheaf cohomology , 1973 .